In the right triangle, there is a relation between the 2 legs of the right angle and the hypotenuse (the opposite side to the right angle)
![(hypotenuse)^2=(leg1)^2+(leg2)^2](https://img.qammunity.org/2023/formulas/mathematics/college/5396spw7u9v8w4eu1un3lj0qpiuiu54wp1.png)
From the given figure
∵ leg1 = 7 ft
∵ leg2 = h ft
∵ hypotenuse = 16 ft
→ Substitute them in the rule above to find h
![(16)^2=(7)^2+h^2](https://img.qammunity.org/2023/formulas/mathematics/college/ki3hcehjs0u1rz8ji9mj8tkiurg36u1hhs.png)
∵ 16^2 = 256 and 7^2 = 49
![\therefore256=49+h^2](https://img.qammunity.org/2023/formulas/mathematics/college/w5uzqju7y0r6yrkuvsv04gvud4cn5p88kv.png)
→ Subtract 49 from both sides
![\begin{gathered} 256-49=49-49+h^2 \\ 207=h^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rq1boga580yuu764eb3a77xrvdwm6mtgex.png)
→ Take square root for both sides to find h
![\begin{gathered} \therefore\sqrt[]{207}=\sqrt[]{h^2} \\ 14.38749=h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z8rvyy03nzm8qrqrmcrbhsd5w5vmzaxbp1.png)
→ Round it to the nearest tenth
∴ h = 14.4 feet
The answer is B