Answer:
![\begin{gathered} \sin A=\frac{\sqrt[]{6}}{3} \\ \cos A=\frac{\sqrt[]{3}}{3} \\ \sin B=\frac{\sqrt[]{3}}{3} \\ \cos B=\frac{\sqrt[]{6}}{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p12yjpvf0g6rado5axv69ej7dxy19255mt.png)
Step-by-step explanation:
Let x represent unknown side length
We can go ahead and find x using the Pythagorean Theorem as seen below;
![\begin{gathered} (5\sqrt[]{3})^2=5^2+x^2 \\ (25*3)=25+x^2 \\ 75-25=x^2 \\ 50=x^2 \\ x=\sqrt[]{50}=\sqrt[]{25*2}=\sqrt[]{25}*\sqrt[]{2}=5\sqrt[]{2} \\ x=5\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gjbbwz6fz88q47x49yyj2e42klm8g723co.png)
Let's find sin A as seen below;
![\begin{gathered} \sin A=\frac{opposite}{\text{hypotenuse}}=\frac{5\sqrt[]{2}}{5\sqrt[]{3}} \\ \sin A=\frac{\sqrt[]{2}}{\sqrt[]{3}}=\frac{\sqrt[]{2}*\sqrt[]{3}}{\sqrt[]{3}*\sqrt[]{3}}=\frac{\sqrt[]{6}}{3} \\ \sin A=\frac{\sqrt[]{6}}{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/30nkzdsmuc42v5i2yws1cqamtitbq3x4gf.png)
Let's find cos A as seen below;
![\begin{gathered} \cos A=\frac{adjacent}{\text{hypotenuse}}=\frac{5}{5\sqrt[]{3}} \\ \cos A=\frac{1}{\sqrt[]{3}}=\frac{\sqrt[]{3}}{\sqrt[]{3}*\sqrt[]{3}}=\frac{\sqrt[]{3}}{3} \\ \cos A=\frac{\sqrt[]{3}}{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ybyd6jbjdzu4e0nf4q4j1kh383q6476eaz.png)
Let's find sin B as seen below;
![\begin{gathered} \sin B=\frac{\text{opposite}}{\text{hypotenuse}}=\frac{5}{5\sqrt[]{3}} \\ \sin B=\frac{1}{\sqrt[]{3}}=\frac{\sqrt[]{3}}{\sqrt[]{3}*\sqrt[]{3}}=\frac{\sqrt[]{3}}{3} \\ \sin B=\frac{\sqrt[]{3}}{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6vuuaplct2j8luwu5dx6w8i3klj03ifxqt.png)
Let's find cos B as seen below;
![\begin{gathered} \cos B=\frac{\text{adjacent}}{\text{hypotenuse}}=\frac{5\sqrt[]{2}}{5\sqrt[]{3}} \\ \cos B=\frac{\sqrt[]{2}}{\sqrt[]{3}}=\frac{\sqrt[]{2}*\sqrt[]{3}}{\sqrt[]{3}*\sqrt[]{3}}=\frac{\sqrt[]{6}}{3} \\ \cos B=\frac{\sqrt[]{6}}{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vo6kij9x7dikj96pik1fqy3loh8su1fmpm.png)