Given the functions:
![\begin{gathered} f(x)=-\sqrt[]{x-3} \\ g(x)=3x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rlfkbvkfv64p9vbb4hxp39h16j5357j2eh.png)
You need to multiply them, in order to find:

Then, you get:
![\begin{gathered} (f\cdot g)(x)=(-\sqrt[]{x-3})(3x) \\ (f\cdot g)(x)=-3x\sqrt[]{x-3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vxbc3bf6bfebhptvd25nihvy5htsp1ibh4.png)
In order to find the Domain, you need to remember that the Domain of a Radical Function are those input values (x-values) for which the Radicand is positive. Then, in this case, you need to set up that:

Now you have to solve for "x":

Therefore:

Hence, the answer is:
![\begin{gathered} (f\cdot g)(x)=-3x\sqrt[]{x-3} \\ \\ Domain\colon\lbrack3,\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/knjs5ccl0vccjko0s45n9c3yb0on9cb5w9.png)