Given:
a.) Nguyen deposited $35 in a bank account.
b.) It earns 14% interest.
To be able to determine how much interest will he earn in 72 months, the following formula will be used for Compound Interest:
![\text{ Interest Earned = P(1 + }((r)/(100))/(n))^(nt)\text{ - P}](https://img.qammunity.org/2023/formulas/mathematics/college/35znou7grgrc2ogy1vt8ba7nj9dwkyev3j.png)
Where,
P = Principal amount
r = Interest rate
n = No. of times the interest is compounded = annually = 1
t = Time in years = 72 months = 72/12 = 6 Years
We get,
![\text{ Intereset Earned = (35)(1 + }((14)/(100))/(1))^((1)(6))\text{ - 35}](https://img.qammunity.org/2023/formulas/mathematics/college/ipdruoxyq99qzcrbwa76ryat9a53n055dk.png)
![\text{ = (35)(1 + }0.14)^6\text{ - 35}](https://img.qammunity.org/2023/formulas/mathematics/college/kfnwkp0l80l1oejsnbxy5ohg0teodmi4wv.png)
![\text{ = (35)(}1.14)^6\text{ - 35}](https://img.qammunity.org/2023/formulas/mathematics/college/zvqtc4uvi7k4inwcrvhtlx84fltk4uho5t.png)
![\text{ = (35)(}2.19497262394)^{}\text{ - 35}](https://img.qammunity.org/2023/formulas/mathematics/college/qrlo79f5z2sijd9d3ntj6uti4be3117b7a.png)
![\text{ = 76.82404183776 - 35}](https://img.qammunity.org/2023/formulas/mathematics/college/9f42e2athqs47kuuy8c32tp5tpnl8ivj9p.png)
![\text{ = 41.82404183776 }\approx\text{ 41.82}](https://img.qammunity.org/2023/formulas/mathematics/college/m5x2jssd0qc32ef52w3xwzxf2p7xyw22te.png)
![\text{ Interest Earned = \$41.82}](https://img.qammunity.org/2023/formulas/mathematics/college/s9n76878ct6odogi66msemgavks7u5ltao.png)
Therefore, the interest he will be earning is $41.82