Answer:
Step-by-step explanation:
For Blue Car:
Distance = 33 & 1/2 miles
Gasoline = 1 & 1/4 gallons
For Red Car:
Distance = 22 & 2/5 miles
Gasoline = 4/5 gallon
To determine the rate unit rate for miles per gallon for each car, we use the following formula:
![Unit\text{ Rate = }\frac{\text{Distance}}{\text{Gasoline consumption}}](https://img.qammunity.org/2023/formulas/mathematics/college/ciyyqlgiflcgph47oe6wui9hfp1oi6d1bm.png)
First, we find the unit rate for blue car:
![\begin{gathered} \text{Unit Rate=}\frac{33\text{ }(1)/(2)\text{ miles}}{1\text{ }(1)/(4)\text{ gallons}} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yc8nv1gxlqk6xttmqsg5oijrv89595gn1r.png)
Convert mixed numbers to improper fractions: 33 & 1/2 = 67/2 and 1 & 1/4 = 5/4
![\begin{gathered} \text{Unit Rate = }((67)/(2))/((5)/(4)) \\ \text{Simplify and rearrange:} \\ =(67(4))/(2(5)) \\ \text{Calculate} \\ =\frac{134\text{ miles}}{5\text{ gallon}}\text{ } \\ or\text{ }26.8\text{ miles/gallon} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tzxqh07q32ef98au3y5ynow8jricoy9xd5.png)
Next, we find the unit rate for red car:
![\begin{gathered} \text{Unit Rate = }(22(2)/(5))/((4)/(5)) \\ \text{Simplify and rearrange} \\ =((112)/(5))/((4)/(5)) \\ =(112(5))/(5(4)) \\ \text{Calculate} \\ =28\text{ miles/gallon} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k615xs3z5rx80ddko85c2bxnp4mqx825k4.png)
Therefore, the car that could travel the greater distance on 1 gallon of gasoline is the red car.