Answer:
a.
m/s
m/s
b.
![t=5.009](https://img.qammunity.org/2023/formulas/physics/college/fflhyojhrvexi4uey84aket25h3ztvjtqo.png)
c.
![y=27.7](https://img.qammunity.org/2023/formulas/physics/college/8geycglv1p2fwtej3qpen28y26bgnktmst.png)
Step-by-step explanation:
Lets write down what we were given.
Angle = 37°
Initial Velocity = 50 m/s
Displacement in x direction = 200 m
Take note:
I am having some trouble with the theta symbol so let theta =
![N](https://img.qammunity.org/2023/formulas/mathematics/high-school/z5a9pa0akwvris57a8lcgjxtydrr791jnp.png)
Lets do question C first.
We know that time is equal to
aka
.
₀ₓ
⇒
⇒
![(x)/(v_(0) *cos(N))](https://img.qammunity.org/2023/formulas/physics/college/cd3m9dt8e9lu2k978r5jsn2dijj5y6in1i.png)
Now substitute the expression for t into the equation for the position.
![y=(v_(0)sin(N))*((x)/(v_(0)cos(N) ))-(1)/(2)g((x)/(v_(0)cos(N) )) ^(2)](https://img.qammunity.org/2023/formulas/physics/college/qqgsfm5c90astl4tgi3z2z3h0i079771nj.png)
Rearranging terms, we have
![y=(tan(N)*x)-[(g)/(2(v_(0)cos(N))^(2) ) ]x^(2)](https://img.qammunity.org/2023/formulas/physics/college/6f1a4zypwjg2ni072efm8y4o4lasqshzwz.png)
Now lets substitute our numbers in for the variables. Then simplify.
![y=(tan37*200)-[(9.81)/(2(50*cos37)^(2) ) ]200^(2)](https://img.qammunity.org/2023/formulas/physics/college/sruifmqcggkdf885zkzpkl470vknt6rlmg.png)
![y=150.7108-[(9.81)/(2(50*cos37)^(2) ) ]200^(2)](https://img.qammunity.org/2023/formulas/physics/college/fikzso07ftnjwu3wxpku6ov8h1y7n1vqdv.png)
![y=150.7108-[0.0030761]200^(2)](https://img.qammunity.org/2023/formulas/physics/college/lha3ayszg72rlo198pcvv1b76g5ehsmq6f.png)
![y=150.7108-(0.0030761*40000)](https://img.qammunity.org/2023/formulas/physics/college/n24x6q70bm3tot21zj3sq8eggj1qki5sk7.png)
![y=150.7108-123.0444](https://img.qammunity.org/2023/formulas/physics/college/bkyq244nl4s9vcijfkgujsmnlk4vr5uzot.png)
![y=27.7](https://img.qammunity.org/2023/formulas/physics/college/8geycglv1p2fwtej3qpen28y26bgnktmst.png)
Now lets do question B.
Lets steal this from the last question.
We know that time is equal to
aka
.
₀ₓ
⇒
⇒
![(x)/(v_(0) *cos(N))](https://img.qammunity.org/2023/formulas/physics/college/cd3m9dt8e9lu2k978r5jsn2dijj5y6in1i.png)
Now substitute the expression for t into the equation for the position.
![y=(v_(0)sin(N))*((x)/(v_(0)cos(N) ))-(1)/(2)g((x)/(v_(0)cos(N) )) ^(2)](https://img.qammunity.org/2023/formulas/physics/college/qqgsfm5c90astl4tgi3z2z3h0i079771nj.png)
We can substitute
for
![(x)/(v_(0)cos(N) )](https://img.qammunity.org/2023/formulas/physics/college/ac8pzjnurrrtg75kdorh9tcgp10ou0iw8g.png)
![y=(v_(0)sin(N))*(t)-(1)/(2)g(t) ^(2)](https://img.qammunity.org/2023/formulas/physics/college/ympmr4mdd07m3zk6o5clrco7oyuw2qtc4q.png)
We can rewrite the equation as
![(v_(0)sin(N)(t)-(1)/(2)*(g(t)^(2))=y](https://img.qammunity.org/2023/formulas/physics/college/1z4qn49fk15yn4yz81djbfsgzki8peq1n0.png)
Now lets substitute our numbers in for the variables.
![(50sin(37)(t)-(1)/(2)*(9.81(t)^(2))=27.7](https://img.qammunity.org/2023/formulas/physics/college/evcsu3ec6udpsk2aciz0y9cpxtc0nwrwwx.png)
After some painful algebra and factoring we get
![30.09075115t-4.905t^(2)=27.6664](https://img.qammunity.org/2023/formulas/physics/college/l2vzf1vsdh4tjmf3hrqay40vzlfe699jj2.png)
Subtract
from both sides.
![30.09075115t-4.905t^(2)-27.6664=0](https://img.qammunity.org/2023/formulas/physics/college/qp6arqdtkjrdln7jqyf6jg2rwxafscdh2g.png)
Use the quadratic formula to find the solutions.
![\frac{-b+-\sqrt{b^(2)-4ac } }{2a}](https://img.qammunity.org/2023/formulas/physics/college/zyiqp5hwozchxwh1ys45g6qgmc30znix4x.png)
After some more painful algebra we get
![t=5.00854263, 1.12616708](https://img.qammunity.org/2023/formulas/physics/college/8w86xuxx7ygwniwn3lu0u1x5z6g0dgx7oc.png)
1.126 does not make any sense so.
![t=5.009](https://img.qammunity.org/2023/formulas/physics/college/fflhyojhrvexi4uey84aket25h3ztvjtqo.png)
Finally lets do question A.
Lets draw a triangle. We have the velocity which is the hypotenuse and we have the angle. From there we can solve for the opposite and adjacent sides.
Let
and
![O=vertical](https://img.qammunity.org/2023/formulas/physics/college/d6xp2xsk89f4jyfjcs9w7lejkvamhhcax5.png)
![cos(37)=(A)/(50)](https://img.qammunity.org/2023/formulas/physics/college/dh4s7lolan5m8aeh258vberao5kuk03m8y.png)
![A=39.9](https://img.qammunity.org/2023/formulas/physics/college/o26vrbuluzg1lnssn6qskdyl11vv12dodv.png)
![sin37=(O)/(50)](https://img.qammunity.org/2023/formulas/physics/college/k52eo4b5q14kxffdbgamuyhmd4f5bvwifg.png)
![O=30.1](https://img.qammunity.org/2023/formulas/physics/college/wh6drr0glt9cmiud5gvbauqqfsoaa7pev3.png)