69,417 views
30 votes
30 votes
Find The Value Of x ?


1) \sf \large \: log_(3)( (1)/(3) ) = x


2) \large\sf log_(3)(x - 1) = 2
Thankuhh☃️​

User Anna Skoulikari
by
2.4k points

2 Answers

23 votes
23 votes


\qquad \qquad\huge \underline{\boxed{\sf Answer}}

Here's the solution ~

Question 1 :


\qquad \sf  \dashrightarrow \: log_{ {3} }( (1)/(3) ) = x


\qquad \sf  \dashrightarrow \: log_{ {3} }( {3}^( - 1) ) = x


\qquad \sf  \dashrightarrow \: log_{ {3} }( {3})^( - 1 ) = x


\qquad \sf  \dashrightarrow \: - 1 * log_(3)(3) = x


\qquad \sf  \dashrightarrow \: - 1 * 1 = x


\qquad \sf  \dashrightarrow \: x = - 1

Question 2 :


\qquad \sf  \dashrightarrow \: log_(3)(x - 1) = 2


\qquad \sf  \dashrightarrow \: x - 1 = {3}^(2)


\qquad \sf  \dashrightarrow \: x = 9 + 1


\qquad \sf  \dashrightarrow \: x = 10

User Mrjmh
by
3.8k points
19 votes
19 votes

Answer:

1)
x = -1 || 2)
x = 10

Step-by-step explanation:

1)


\log _3\left((1)/(3)\right)=x


(1)/(3) = 3^x


3^(-1) = 3^x


x = -1

2)


\log _3\left(x-1\right)=2


x - 1 = 3^2


x -1 = 9


x = 9 +1


x = 10

User Luggage
by
3.5k points