Answer:
r ≈ 4 cm
Explanation:
Total Surface Area of a cylinder
A = Base Area x 2 + Lateral Surface Area
A = 2(πr²) + 2πrh
where r = radius of base and h = height of cylinder
Solving for r we get
![\displaystyle r = (1)/(2) \sqrt{h^2 + 2 (A)/(\pi) }-(h)/(2)\\\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/y2nx4wrlu0a9p8hhaoob1hs1ejruils6ms.png)
Given h = 10 cm and A = 325 we get
![\displaystyle r = (1)/(2) \sqrt{10^2 + 2 (352)/(\pi) }-(10)/(2)\\\\\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/b1ahd3v98dvjtv9jo7j2ivne96mf0lcrqx.png)
![\sqrt{10^2 + 2 (352)/(\pi) } =\sqrt{100+(704)/(\pi )}\\\\= √(100 + 224.09)\\\\\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/ozo645q3fa570t8laumlqhl45thllh6cip.png)
=
![√(324.09)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wfjhgmv86me1lgh4rt139z07d6fxdud6n9.png)
= 18.0025
1/2 x 18.0025 ≈ 9
So r ≈ 9 - 10/2 = 9 -5 = 4
r ≈ 4 cm