Answer:
Option C,
![f(x)=-3x^2-6xh-3h^2+2x+2h+1](https://img.qammunity.org/2023/formulas/mathematics/college/5x2r3e15harmdf1j8hhqrxeu2syt5fjnnv.png)
Explanation:
Oooo the ol canvas quiz yeesh.
Anyway, for this sort of problem, anywhere in your second equation that you see an x, sub for (x+h).
![f(x)=-3x^(2) +2x+1](https://img.qammunity.org/2023/formulas/mathematics/college/5l5jy4y5j1i200yt5kzbrxvido3g36jcs9.png)
![f(x)=-3(x+h)^(2) +2(x+h)+1\\](https://img.qammunity.org/2023/formulas/mathematics/college/i2h29lm5z04lm5yoyrrk7z3kyzydt17a93.png)
You must foil the first part
![f(x)=-3(x^2+h^2+2xh)+2(x+h)+1\\](https://img.qammunity.org/2023/formulas/mathematics/college/b61mb4lf1pxetrpn5r48she9h5fqaxsont.png)
Now distribute to eliminate the parentheses
![f(x)=-3x^2-3h^2-6xh+2x+2h+1](https://img.qammunity.org/2023/formulas/mathematics/college/cp8799lies9vr92v3rgb3xvy2errcu8rk3.png)
As your answer choice has it:
![f(x)=-3x^2-6xh-3h^2+2x+2h+1](https://img.qammunity.org/2023/formulas/mathematics/college/5x2r3e15harmdf1j8hhqrxeu2syt5fjnnv.png)