Given info:- Rationalisie the denominator of the following 1/(3+√7) + 1/(√7+√5) + 1/(√5+√3) + 1/(√3+1) = 1, also show that Left hand side is equal to Right hand side that means LHS = RHS.
Explanation:-
On rationalising the denominator, we get
First term: 1/(3+√7)
⇛{1/(3+√7)}×{(3-√7)/(3-√7)}
⇛{1(3-√7)}/{(3+√7)(3-√7)}
⇛(3-√7)/{(3)²-(√7)²}
⇛(3-√7)/{(3*3)-(√7*7)}
⇛(3-√7)/(9 - 7)
⇛(3-√7)/2
Second term: 1/(√7+√5)
⇛{1/√7+√5)}×{(√7-√5)/(√7-√5)}
⇛{1(√7-√5)}/{(√7+√5)(√7-√5)}
⇛(√7-√5)/{(√7)²-(√5)²}
⇛(√7-√5)/{(√7*7)-(√5*5)}
⇛(√7-√5)/(7-5)
⇛(√7-√5)/2
Third term: 1/(√5+√3)
⇛{1/(√5+√3)}×{(√5-√3)/(√5-√3)}
⇛{1(√5-√3)}/{(√5+√3)(√5-√3)}
⇛(√5-√3}/{(5)²-(√3)²}
⇛(√5-√3)/{(√5*5)-(√3*3)}
⇛(√5-√3)/(5-3)
⇛(√5-√3)/2
Fourth term: 1/(√3+1)
⇛{1/(√3+1)}×{(√3-1)/(√3-1)}
⇛{1(√3-1)}/{(√3+1)(√3-1)}
⇛(√3-1)/{(√3)²-(1)²}
⇛(√3-1)/{(√3*3)-(1*1)}
⇛(√3-1)/3-1
⇛(√3-1)/2
Hence, LHS = 1/(3+√7) + 1/(√7+√5) + 1/(√5+√3) + 1/(√3+1)
Now, Substitute their rationalised value in expression, we get
= (3-√7)/2 + (√7-√5)/2 + (√5-√3)/2 + (√3-1)/2
Take the LCM of all the denominator 2,2,2 and 2 is "2".
= (3-√7+√7-√5+√5-√3+√3-1)/2
= (3-1)/2
= 2/2
= 1
= RHS proved.
Hope this may help you.
If you have any doubt, then you can ask me in the comments.