269,130 views
39 votes
39 votes
Question:-

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Prove That:

\begin{gathered}\sf \dashrightarrow \ (1)/(3 + √(7)) \ + \ (1)/(√(7) + √(5)) \ + \ (1)/(√(5) + √(3)) \ + \ (1)/(√(3) + 1) = 1\\ \end{gathered}


Spammer Go Away ​​

User Denys Medvediev
by
3.0k points

2 Answers

20 votes
20 votes

Given info:- Rationalisie the denominator of the following 1/(3+√7) + 1/(√7+√5) + 1/(√5+√3) + 1/(√3+1) = 1, also show that Left hand side is equal to Right hand side that means LHS = RHS.

Explanation:-

On rationalising the denominator, we get

First term: 1/(3+√7)

⇛{1/(3+√7)}×{(3-√7)/(3-√7)}

⇛{1(3-√7)}/{(3+√7)(3-√7)}

⇛(3-√7)/{(3)²-(√7)²}

⇛(3-√7)/{(3*3)-(√7*7)}

⇛(3-√7)/(9 - 7)

⇛(3-√7)/2

Second term: 1/(√7+√5)

⇛{1/√7+√5)}×{(√7-√5)/(√7-√5)}

⇛{1(√7-√5)}/{(√7+√5)(√7-√5)}

⇛(√7-√5)/{(√7)²-(√5)²}

⇛(√7-√5)/{(√7*7)-(√5*5)}

⇛(√7-√5)/(7-5)

⇛(√7-√5)/2

Third term: 1/(√5+√3)

⇛{1/(√5+√3)}×{(√5-√3)/(√5-√3)}

⇛{1(√5-√3)}/{(√5+√3)(√5-√3)}

⇛(√5-√3}/{(5)²-(√3)²}

⇛(√5-√3)/{(√5*5)-(√3*3)}

⇛(√5-√3)/(5-3)

⇛(√5-√3)/2

Fourth term: 1/(√3+1)

⇛{1/(√3+1)}×{(√3-1)/(√3-1)}

⇛{1(√3-1)}/{(√3+1)(√3-1)}

⇛(√3-1)/{(√3)²-(1)²}

⇛(√3-1)/{(√3*3)-(1*1)}

⇛(√3-1)/3-1

⇛(√3-1)/2

Hence, LHS = 1/(3+√7) + 1/(√7+√5) + 1/(√5+√3) + 1/(√3+1)

Now, Substitute their rationalised value in expression, we get

= (3-√7)/2 + (√7-√5)/2 + (√5-√3)/2 + (√3-1)/2

Take the LCM of all the denominator 2,2,2 and 2 is "2".

= (3-√7+√7-√5+√5-√3+√3-1)/2

= (3-1)/2

= 2/2

= 1

= RHS proved.

Hope this may help you.

If you have any doubt, then you can ask me in the comments.

User Vikash Rathee
by
2.7k points
21 votes
21 votes

Explanation:


\large \rm \red{\widetilde{Taking\ RHS:-}}


\rm :\longmapsto (1)/(3 + √(7)) \ + \ (1)/(√(7) + √(5)) \ + \ (1)/(√(5) + √(3)) \ + \ (1)/(√(3) + 1)

Rationalizing, we get


\rm :\longmapsto (1)/(3+\sqrt7) * (3-\sqrt7)/(3-\sqrt7) + (1)/(\sqrt7 + \sqrt5) * (\sqrt7 - \sqrt5)/(\sqrt7 - \sqrt5)


\rm + (1)/(\sqrt5 + \sqrt3) * (\sqrt5 - \sqrt3)/(\sqrt5-\sqrt3) + (1)/(\sqrt3 + 1) * (\sqrt3 - 1)/(\sqrt3 -1)


\rm :\longmapsto (3 - \sqrt7)/((3)^2 - (\sqrt7)^2)


+ (\sqrt7 - \sqrt5)/((\sqrt7)^2 - (\sqrt5)^2)


+(\sqrt5 - \sqrt3)/((\sqrt5)^2 - (\sqrt3)^2) +


(\sqrt3-1)/((\sqrt3)^2 - 1^2)

User Eray Balkanli
by
3.0k points