Answer:
- Vertex = (-3, -1).
- y-intercept = (0, 2).
- x-intercepts = (-2, 0) and (-4, 0).
- Domain = (-∞, ∞).
- Range = [-1, ∞).
Explanation:
Given absolute value function:
![f(x)=|x+3|-1](https://img.qammunity.org/2023/formulas/mathematics/college/pjkmss786bdkfrtkmaw7kjexr2ub869ed3.png)
The parent function of the given function is:
![f(x)=|x|](https://img.qammunity.org/2023/formulas/mathematics/college/wua4w9ki9cqsum5s1jxpp69bhfq7ik7xp3.png)
Graph of the parent absolute function:
- Line |y| = -x where x ≤ 0
- Line |y| = x where x ≥ 0
- Vertex at (0, 0)
Translations
![f(x+a) \implies f(x) \: \textsf{translated $a$ units left}.](https://img.qammunity.org/2023/formulas/mathematics/high-school/iiffpqhg4rl9zr4vi6c19mtiw42tbqt16g.png)
![f(x-a) \implies f(x) \: \textsf{translated $a$ units right}.](https://img.qammunity.org/2023/formulas/mathematics/high-school/jir4n9r0rph408rlm03oan6c9a6ek395fu.png)
![f(x)+a \implies f(x) \: \textsf{translated $a$ units up}.](https://img.qammunity.org/2023/formulas/mathematics/high-school/bp0b27kz23xv1mpl9d7n694mw0f7ewwzak.png)
![f(x)-a \implies f(x) \: \textsf{translated $a$ units down}.](https://img.qammunity.org/2023/formulas/mathematics/high-school/8k8l9xzun1ptp4vv3pwvzxwccjg9wyjha2.png)
Therefore, the given function is the parent function translated 3 units left and 1 unit down.
If the vertex of the parent function is (0, 0) then the vertex of the given function is:
⇒ Vertex = (0 - 3, 0 - 1) = (-3, -1)
To find the y-intercept, substitute x = 0 into the given function:
![\implies \textsf{$y$-intercept}=|0+3|-1=2](https://img.qammunity.org/2023/formulas/mathematics/college/pfb1420qmpr9jnzgl7qce0v78v2kje2h3w.png)
To find the x-intercepts, set the function to zero and solve for x:
![\implies |x+3|-1=0](https://img.qammunity.org/2023/formulas/mathematics/college/e7k45uh50ohtqjipb8t6w5lfc0acm3sy1v.png)
![\implies |x+3|=1](https://img.qammunity.org/2023/formulas/mathematics/college/3jhjqoppq19xokj3g2i0ss9l4ns405bsm9.png)
Therefore:
![\implies x+3=1 \implies x=-2](https://img.qammunity.org/2023/formulas/mathematics/college/xvo36hayd0f27t7uv4v74kivpi8w9harme.png)
![\implies x+3=-1 \implies x=-4](https://img.qammunity.org/2023/formulas/mathematics/college/nhxepl66deu9x0lrs9ojrtl9qridec9asl.png)
Therefore, the x-intercepts are (-2, 0) and (-4, 0).
To sketch the graph:
- Plot the found vertex, y-intercept and x-intercepts.
- Draw a straight line from the vertex through (-2, 0) and the y-intercept.
- Draw a straight line from the vertex through (-4, 0).
- Ensure the graph is symmetrical about x = -3.
Note: When sketching a graph, be sure to label all points where the line crosses the axes.
The domain of a function is the set of all possible input values (x-values).
The domain of the given function is unrestricted and therefore (-∞, ∞).
The range of a function is the set of all possible output values (y-values).
The minimum of the function is the y-value of the vertex: y = -1.
Therefore, the range of the given function is: [-1, ∞).