176k views
2 votes
Fred is an old man he lived 1\8 of his life as a boy, 1\12 as a youth, 1\2 as a man and 28 years in his old age. How old is Fred now​

2 Answers

3 votes

1. Observe problem

1-(1/8+1/12+1/2)

Make all common denominator

The Least common multiple of 8,12, and 2 is 24

1-((3+2+12)/24)=

1-17/24=

7/24

Therefore, 28 years make up 7/24 of his life.

Simplifying, he grows 4 years for every 1/24 of his life

4 times 24 is 96, so

Fred is 96 currently(that's pretty old)

User Mansukh Ahir
by
3.4k points
5 votes


\bold{\huge{\pink{\underline{ Solution }}}}


\bold{\underline{ Given :- }}

  • Fred is an old man he lived 1/8th of his life as a boy
  • He lived 1/12th of his life as a youth , 1/2 of his life as a man and 28 years in his old age


\bold{\underline{ To \: Find :- }}

  • We have to find the current age of Fred?


\bold{\underline{ Let's \: Begin :- }}

Let the present age of Fred be x

Therefore,

According to the question,


\sf{ 1/8x + 1/12x + 1/2x + 28 = x }


\sf{ (3x + 2x + 12x )/24 + 28 = x }


\sf{ 17x/24 + 28 = x }


\sf{ 28 = x - (17/24)x}


\sf{ 28 = 24x - 17x/24 }


\sf{28 = 7x/24 }


\sf{ 28 = 7x/24}


\sf{ 7x = 28 × 24}


\sf{ x = 672/7}


\sf{ x = 96\: years}


\sf{\red{ Hence,\: The\: total\: age\: of\: Fred \:is \: 96\: years }}

User Dave Cadwallader
by
3.8k points