106k views
2 votes
Which of the following is a factor of 24x6 − 1029y3?

24
2x2 + 7y
4x4 + 14x2y + 49y2
All of the above

2 Answers

5 votes

Answer:


4x^4+14x^2y+49y^2

Explanation:

Given expression:


24x^6-1029y^3

Factor out the common term 3:


\implies 3(8x^6-343y^3)

Rewrite 8 as 2³ and 343 as 7³:


\implies 3(2^3x^6-7^3y^3)


\textsf{Rewrite $x^6$ as $x^(2 \cdot 3)$}:


\implies 3(2^3x^(2 \cdot 3)-7^3y^3)


\textsf{Apply the exponent rule} \quad a^(bc)=(a^b)^c:


\implies 3(2^3(x^2)^3-7^3y^3)


\textsf{Apply the exponent rule} \quad a^cb^c=(ab)^c:


\implies 3((2x^2)^3-(7y)^3)

Apply the Difference of Cubes formula a³ - b³ = (a - b)(a² + ab + b²):


\implies 3(2x^2-7y)((2x^2)^2+(2x^2)(7y)+(7y)^2)


\textsf{Apply the exponent rule} \quad (ab)^c=a^cb^c:


\implies 3(2x^2-7y)(2^2x^4+2x^27y+7^2y^2)


\implies 3(2x^2-7y)(4x^4+14x^2y+49y^2)

Therefore, the only answer option that is a factor of the given expression is:


\boxed{4x^4+14x^2y+49y^2}

User Svisstack
by
4.2k points
6 votes

Answer:

  • C) 4x⁴ + 14x²y + 49y²

Explanation:

Given expression

  • 24x⁶ - 1029y³

Factorize it as follows:

  • 24x⁶ - 1029y³ =
  • 3(8x⁶ - 343y³) =
  • 3[(2x²)³ - (7y)³] =
  • 3(2x² - 7y)[(2x²)² + (2x²)(7y) + (7y)²] =
  • 3(2x² - 7y)(4x⁴ + 14x²y + 49y²)

Used identity:

  • a³ - b³ = (a - b)(a² + ab + b²)

Correct choice is C

User Zawad
by
4.3k points