Step-by-step explanation:
Consider the following expression:
![\cos(x)=(5)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/np39szzjuvuhum3nc64l2d87zr0ybng3am.png)
this expression can be represented in the following right triangle:
To find y, we can apply the Pythagoras theorem as this:
![y=\sqrt{13^2\text{ - 5}^2}\text{ = 12}](https://img.qammunity.org/2023/formulas/mathematics/college/nsp11k1xuhuj66otto5mx8aje19x2ivyiz.png)
but since x terminates in quadrant IV, we have that
![y=\text{ - 12}](https://img.qammunity.org/2023/formulas/mathematics/college/lrrpb5qctqzf7iqedl39ia1a9p9cxx9rjf.png)
and thus
![\sin(x)=\text{ -}(12)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/eedda2f6uqd7qbwizo69x7nq8jomks3oxi.png)
and
![\tan(x)=\text{ -}(12)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/1v1wawd9pjxn04ufx3r0wvl26xfcbu8eg7.png)
now, using this data in the following formulas:
we can conclude that the correct answer is:
Answer:
![\sin(2x)=\text{ -}(120)/(169)](https://img.qammunity.org/2023/formulas/mathematics/college/zb34n5a6idkqruwqnce2dq4luiut1w262z.png)
![\cos(2x)=\text{ - }(119)/(169)](https://img.qammunity.org/2023/formulas/mathematics/college/fx4g1fu4eapnaiggj0zf38z2s239g2ir1p.png)
![tan(x)=(120)/(119)](https://img.qammunity.org/2023/formulas/mathematics/college/kckle7wcj4p1mttm7wc47dskx6lcfpltas.png)