ANSWER :
EXPLANATION :
From the problem, we have :
![\begin{gathered} \lvert{2x+4}\rvert+2\le8 \\ \text{ which can be simplified as :} \\ \lvert{2x+4}\rvert\le6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hmcdsbief9cqmbunb60m2jhp74m5ahftn2.png)
Note that in solving absolute values, the terms inside the absolute value sign can have inverse signs.
Case 1 : Positive
![\begin{gathered} 2x+4\le6 \\ 2x\le2 \\ x\le(2)/(2) \\ \\ x\le1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/47k50p805pevt7djn9viu0dfo3h991zlk1.png)
Case 2 : Negative, the symbol will change since we are multiplying a negative number
![\begin{gathered} -(2x+4)\ge6 \\ -2x-4\ge6 \\ -2x\ge10 \\ x\ge(10)/(-2) \\ \\ x\ge-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6qgot41utefqry93oge4yhddqakct1drou.png)
So the solution is :
![\begin{gathered} x\le1\quad and\quad x\ge-5 \\ \text{ when written together :} \\ -5\le x\le1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k1qe5zsvqwirtqpk8nu0oguzrxet3dtomc.png)
or in interval notation :
[-5, 1]
The graph of it will be :