SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given probabilities
![\begin{gathered} P(X=0)=0.5,P(X=1)=0.5 \\ P(Y=1)=0.4,P(Y=2)=0.6 \\ Z=X+Y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l4z9zmfrwra1jvrw63e7nn9cts8zt3elxl.png)
STEP 2: Write the formula for calculating the required probability
![P(Z<3)=P(Z=1)+P(Z=2)](https://img.qammunity.org/2023/formulas/mathematics/college/t3jnv2tqf7f0brwvrh8ev2gf9vuudppvhx.png)
STEP 3: Find P(Z=1)
![\begin{gathered} P(Z=1)=P(X=0)\text{ and }P(Y=1) \\ =0.5*0.4=0.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ohuhkuiusrqus1hy8zqv3s1fac5w5uxc04.png)
STEP 4: Find P(Z=2)
![\begin{gathered} P(Z=2)=P(X=0)\cdot P(Y=2)\text{ or }* P(X=1)\cdot P(Y=1) \\ (0.5*0.6)+(0.5*0.4) \\ =0.3+0.2=0.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i11gtxlyg6bpzckycdiawk1m5jehfrv097.png)
STEP 5: Find the P(Z<3)
![P(Z<3)=0.5+0.2=0.7](https://img.qammunity.org/2023/formulas/mathematics/college/liet2tjwy8ya2udq9x8k41i7supkvljd9j.png)
Hence, the answer is 0.7