To solve for the angles in a parallel line:
For a pair of parallel lines:
Corresponding Angles are equal m<1 = m<5 = 143°
Alternate Interior Angles are equal m<4 = m<6
Alternate Exterior Angles are equal m<2 = m<8
Consecutive Interior Angles add up to 180° m<3 + m<6 = 180
... then the lines are Parallel
![\begin{gathered} m<5+m<6=180 \\ 143+m<6=180 \\ m<6=180-143 \\ m<6=37^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4m9yd25t2idm10xkc9k2skalsaugdb49sk.png)
Therefore the consecutive interior angles add up to 180
![\begin{gathered} m<3+m<6=180 \\ m<3+37=180 \\ m<3=180-37 \\ m<3=143^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m98t2kd9rurgxgbregsdae4j5ct0u22jyc.png)
Therefore the consecutive interior angles add up to 180
![\begin{gathered} m<3+m<2=180 \\ 143+m<2=180 \\ m<2=180-143 \\ m<2=37^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fk0qqfqtxxsp2y1kr320oprm7usgg4bsyn.png)
Hence the corresponding angle for m<3 = 143° and m<2 = 37°