49.3k views
0 votes
The points (8, 5) and (0, -3) fall on a particular line. What is its equation in slope-intercept

form?

User Shnatsel
by
3.9k points

1 Answer

0 votes


(\stackrel{x_1}{8}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{0}~,~\stackrel{y_2}{-3}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-3}-\stackrel{y1}{5}}}{\underset{run} {\underset{x_2}{0}-\underset{x_1}{8}}} \implies \cfrac{ -8 }{ -8 } \implies 1


\begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{5}=\stackrel{m}{ 1}(x-\stackrel{x_1}{8}) \\\\\\ y-5=x-8\implies {\Large \begin{array}{llll} y=x-3 \end{array}}

User Tedski
by
3.7k points