214,466 views
30 votes
30 votes
Find the cube roots of 27(cos 330° + i sin 330°)

User William Pourmajidi
by
2.8k points

1 Answer

16 votes
16 votes

Answer:

See below for all the cube roots

Explanation:

DeMoivre's Theorem

Let
z=r(cos\theta+isin\theta) be a complex number in polar form, where
n is an integer and
n\geq1. If
z^n=r^n(cos\theta+isin\theta)^n, then
z^n=r^n(cos(n\theta)+isin(n\theta)).

Nth Root of a Complex Number

If
n is any positive integer, the nth roots of
z=rcis\theta are given by
\sqrt[n]{rcis\theta}=(rcis\theta)^{(1)/(n)} where the nth roots are found with the formulas:


  • \sqrt[n]{r}\biggr[cis((\theta+360^\circ k)/(n))\biggr] for degrees (the one applicable to this problem)

  • \sqrt[n]{r}\biggr[cis((\theta+2\pi k)/(n))\biggr] for radians

for
k=0,1,2,...\:,n-1

Calculation


z=27(cos330^\circ+isin330^\circ)\\\\\sqrt[3]{z} =\sqrt[3]{27(cos330^\circ+isin330^\circ)}\\\\z^{(1)/(3)} =(27(cos330^\circ+isin330^\circ))^{(1)/(3)}\\\\z^{(1)/(3)} =27^{(1)/(3)}(cos((1)/(3)\cdot330^\circ)+isin((1)/(3)\cdot330^\circ))\\\\z^{(1)/(3)} =3(cos110^\circ+isin110^\circ)

First cube root where k=2


\sqrt[3]{27}\biggr[cis((330^\circ+360^\circ(2))/(3))\biggr]\\3\biggr[cis((330^\circ+720^\circ)/(3))\biggr]\\3\biggr[cis((1050^\circ)/(3))\biggr]\\3\biggr[cis(350^\circ)\biggr]\\3\biggr[cos(350^\circ)+isin(350^\circ)\biggr]

Second cube root where k=1


\sqrt[3]{27}\biggr[cis((330^\circ+360^\circ(1))/(3))\biggr]\\3\biggr[cis((330^\circ+360^\circ)/(3))\biggr]\\3\biggr[cis((690^\circ)/(3))\biggr]\\3\biggr[cis(230^\circ)\biggr]\\3\biggr[cos(230^\circ)+isin(230^\circ)\biggr]

Third cube root where k=0


\sqrt[3]{27}\biggr[cis((330^\circ+360^\circ(0))/(3))\biggr]\\3\biggr[cis((330^\circ)/(3))\biggr]\\3\biggr[cis(110^\circ)\biggr]\\3\biggr[cos(110^\circ)+isin(110^\circ)\biggr]

User Jim Yarbro
by
3.0k points