40.7k views
5 votes
Please help me on a, b, and c.

Please help me on a, b, and c.-example-1

1 Answer

1 vote

Answer:


\textsf{a)} \quad -(26)/(41)\; \sf cm/min


\textsf{b)} \quad -(258)/(1681)\; \sf deg/min


\textsf{c)} \quad 111\; \sf cm^2/min

Explanation:

Define the variables:

  • Let x = width of the rectangle
  • Let y = length of the rectangle

Given that the width of the rectangle is decreasing at a rate of 2 cm/min:


\implies \frac{\text{d}x}{\text{d}t}=-2\; \sf cm/min

Given that the length of the rectangle is increasing at a rate of 6 cm/min:


\implies \frac{\text{d}y}{\text{d}t}=6\; \sf cm/min

Part (a)

The diagonal forms a right triangle.

Therefore, using Pythagoras Theorem:


\implies x^2+y^2=D^2

where D is the length of the diagonal.

To find the rate of change of the diagonal, take the derivative of the equation with respect to time (t):


\implies \frac{\text{d}}{\text{d}t}x^2+\frac{\text{d}}{\text{d}t}y^2=D^2\frac{\text{d}}{\text{d}t}


\implies 2x \frac{\text{d}x}{\text{d}t}+2y\frac{\text{d}y}{\text{d}t}=2D\frac{\text{d}D}{\text{d}t}


\implies x \frac{\text{d}x}{\text{d}t}+y\frac{\text{d}y}{\text{d}t}=D\frac{\text{d}D}{\text{d}t}

Given:

  • y = 9 cm
  • D = 41 cm

Use Pythagoras Theorem to calculate the width of the rectangle:


\implies x^2+y^2=D^2


\implies x^2+9^2=41^2


\implies x=√(41^2-9^2)


\implies x=40\; \sf cm

Given parameters:


  • \frac{\text{d}x}{\text{d}t}=-2\; \sf cm/min

  • \frac{\text{d}y}{\text{d}t}=6\; \sf cm/min

  • x=40\;\sf cm

  • y = 9\; \sf cm

  • D=41\; \sf cm

Substitute the given parameters into the equation:


\implies x \frac{\text{d}x}{\text{d}t}+y\frac{\text{d}y}{\text{d}t}=D\frac{\text{d}D}{\text{d}t}


\implies (40) (-2)+(9)(6)=41\frac{\text{d}D}{\text{d}t}


\implies -26=41\frac{\text{d}D}{\text{d}t}


\implies \frac{\text{d}D}{\text{d}t}=-(26)/(41)

Therefore, the length of the diagonal is decreasing at a rate of ²⁶/₄₁ cm/min.

Part (b)

Note: The angle θ has not been marked on the given diagram.

Therefore, I have used the angle BAC (please see attached diagram).

If θ is the angle BAC then to find the rate of change of the angle, find an expression for the angle using the tan ratio:


\implies \tan \theta=(x)/(y)


\implies \tan \theta=xy^(-1)

To find the rate of change of the angle, take the derivative of the equation with respect to time (t):


\implies \frac{\text{d}}{\text{d}t}\tan \theta=\frac{\text{d}}{\text{d}t}xy^(-1)


\implies \sec^2 \theta \frac{\text{d}\theta}{\text{d}t}=(1)/(y)\frac{\text{d}x}{\text{d}t}-(x)/(y^2)\frac{\text{d}y}{\text{d}t}


\implies (1)/(\cos^2 \theta) \frac{\text{d}\theta}{\text{d}t}=(1)/(y)\frac{\text{d}x}{\text{d}t}-(x)/(y^2)\frac{\text{d}y}{\text{d}t}

Given:

  • x = 40 cm
  • y = 9 cm
  • D = 41 cm

Find an expression for the cosine of angle θ using the given parameters:


\implies \cos \theta=(y)/(D)=(9)/(41)

Given parameters:


  • \frac{\text{d}x}{\text{d}t}=-2\; \sf cm/min

  • \frac{\text{d}y}{\text{d}t}=6\; \sf cm/min

  • x=40\;\sf cm

  • y = 9\; \sf cm

  • \cos \theta=(9)/(41)

Substitute the given parameters into the equation:


\implies (1)/(\cos^2 \theta) \frac{\text{d}\theta}{\text{d}t}=(1)/(y)\frac{\text{d}x}{\text{d}t}-(x)/(y^2)\frac{\text{d}y}{\text{d}t}


\implies \left((41)/(9)\right)^2 \frac{\text{d}\theta}{\text{d}t}=(1)/(9)(-2)-(40)/(9^2)(6)


\implies \left((1681)/(81)\right) \frac{\text{d}\theta}{\text{d}t}=-(2)/(9)-(80)/(27)


\implies\frac{\text{d}\theta}{\text{d}t}=-(86)/(27) \left((81)/(1681)\right)


\implies\frac{\text{d}\theta}{\text{d}t}=-(258)/(1681)\; \sf deg/min

Therefore, the angle is decreasing at a rate of ²⁵⁶/₁₆₈₁ deg/min.

Part (c)

The equation for the area of triangle ABC is:


A=(1)/(2)xy

To find the rate of change of the area, take the derivative of the equation with respect to time (t):


\implies \frac{\text{d}}{\text{d}t}A=\frac{\text{d}}{\text{d}t}(1)/(2)xy


\implies \frac{\text{dA}}{\text{d}t}=(1)/(2)y\frac{\text{d}x}{\text{d}t}+(1)/(2)x\frac{\text{d}y}{\text{d}t}

Given parameters:


  • \frac{\text{d}x}{\text{d}t}=-2\; \sf cm/min

  • \frac{\text{d}y}{\text{d}t}=6\; \sf cm/min

  • x=40\;\sf cm

  • y = 9\; \sf cm

Substitute the given parameters into the equation:


\implies \frac{\text{dA}}{\text{d}t}=(1)/(2)y\frac{\text{d}x}{\text{d}t}+(1)/(2)x\frac{\text{d}y}{\text{d}t}


\implies \frac{\text{dA}}{\text{d}t}=(1)/(2)(9)(-2)+(1)/(2)(40)(6)


\implies \frac{\text{dA}}{\text{d}t}=-9+120


\implies \frac{\text{dA}}{\text{d}t}=111\; \sf cm^2/min

Therefore, the area of the triangle is increasing at a rate of 111 cm²/min.

Please help me on a, b, and c.-example-1
User Pindo
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories