359,271 views
9 votes
9 votes
Let R₁ and R₂ be the remainders when the polynomials x³-6x²+2x-k and kx³+12x²+14x-3 are divided by (1-2x) and (2x+1) respectively. If R₁ - R₂ = 25/8, find the value of k.​

User Rouan Van Dalen
by
2.7k points

1 Answer

17 votes
17 votes


\large\underline{\sf{Given \: info-}}

When, p(x) = x^3 - 6x^2 + 2x - k, is divided by (1 - 2x), Remainder = R1

When, g(x) = kx^3 + 12x^2 + 14x - 3, is divided by (2x + 1), Remainder = R2

R1 - R2 = 25/8

  • Find the value of k.


\large\underline{\sf{Solution-}}

We are given that,


\sf\longmapsto x^3-6x^2+2x-k/(1-2x)=R_1

And,


\sf\longmapsto kx^3+12x^2+14x-3/(2x+1)=R_2

Taking p(x) first,

We have,


\sf\longmapsto x^3-6x^2+2x-k/(1-2x)=R_1

That is,


\sf\longmapsto p(x)/(1-2x)=R_1

Let, 1 - 2x = 0.

So, x = 1/2

As,


\sf\longmapsto p(x)/(1-2x)=R_1

So, by Factor Theorem,


\sf\longmapsto p\left((1)/(2)\right)=R_1

So,


\sf\longmapsto\left((1)/(2)\right)^3-6\left((1)/(2)\right)^2+2\left((1)/(2)\right)-k=R_1


\sf\longmapsto(1)/(8)-6\!\!\!/^3\left((1)/(4\!\!\!/_2)\right)+2\!\!\!/\left((1)/(2\!\!\!/)\right)-k=R_1

So,


\sf\longmapsto (1)/(8)-(3)/(2)+1-k=R_1

Taking LCM,


\sf\longmapsto (1-3(4)+1(8)-k(8))/(8)=R_1


\sf\longmapsto (1-12+8+8k)/(8)=R_1

So,


\sf\longmapsto (-3-8k)/(8)=R_1 - - - -(1)

Taking g(x) now,

We have,


\sf\longmapsto kx^3+12x^2+14x-3/(2x+1)=R_2

That is,


\sf\longmapsto g(x)/(2x+1)=R_2

Let, 2x + 1 = 0.

So, x = -1/2

As,


\sf\longmapsto g(x)/(2x+1)=R_2

So, by Factor Theorem,


\sf\longmapsto g\left((-1)/(2)\right)= R_2

So,


\sf\longmapsto k\left((-1)/(2)\right)^3+12\left((-1)/(2)\right)^2+14\left((-1)/(2)\right)-3= R_2


\sf\longmapsto k(-1)/(8)+12\!\!\!/^3\left((1)/(4\!\!\!/)\right)+14\!\!\!\!\!/^7\left((-1)/(2\!\!\!/)\right)-3= R_2

So,


\sf\longmapsto (-k)/(8)+3\!\!\!/-7-3\!\!\!/= R_2


\sf\longmapsto (-k)/(8)-7= R_2

Taking LCM,


\sf\longmapsto (-k-7(8))/(8)= R_2

So,


\sf\longmapsto (-k-56)/(8)= R_2 - - - -(2)

Now, we are also given that,


\sf\longmapsto R_1-R_2=(25)/(8)

From (1) & (2),


\sf\longmapsto R_1-R_2=(25)/(8)


\sf\longmapsto (-3-8k)/(8) - (-k-56)/(8) =(25)/(8)

Combining fractions,


\sf\longmapsto (-3-8k+k+56)/(8\!\!\!/)=(25)/(8\!\!\!)


\sf\longmapsto 53-7k=25


\sf\longmapsto 53-25=7k


\sf\longmapsto 7k=28

So,


\sf\longmapsto k=(28\!\!\!\!\!/^(\:\:4))/(7\!\!\!/)

Hence,


\longmapsto\bf k=4

Therefore, the value of k is 4.

User Mark Rummel
by
3.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.