190k views
0 votes
Prove the following...​

Prove the following...​-example-1
User Eid
by
7.4k points

1 Answer

2 votes

Answer:


{ \rm{ \sqrt{ (1 + \cos(x) )/(1 - \cos(x) ) } }} \\ \\

- Rationalize the denominator of the above expression;


{ \rm{ = \sqrt{ ((1 + \cos(x)).(1 + \cos(x)) )/((1 - \cos(x)).(1 + \cos(x)) ) } }} \\ \\ = { \rm \sqrt{ \frac{( {1}^(2) + 2 \cos(x) + \cos ^(2)(x)) }{( {1}^(2) - { \cos }^(2)(x)) } } } \\ \\ = { \rm\sqrt{ \frac{(1 + 2 \cos(x) + { \cos }^(2) (x)) }{(1 - { \cos }^(2)(x)) } } }

- From the above expression, 1 - cos²x = sin²x


= { \rm{ \sqrt{ \frac{1 + 2 \cos(x) + { \cos }^(2)(x) }{ { \sin }^(2)(x) } } }} \\


= { \rm{ \sqrt{ \frac{ {(1 + \cos(x)) }^(2) }{ { \sin}^(2)x } } }} \\ \\ = { \rm{ \frac{ \sqrt{(1 + \cos(x)) {}^(2) } }{ \sqrt{ { \sin}^(2) x} } }} \\ \\ = { \rm{ (1 + \cos(x) )/( \sin(x) ) }} \\ \\ = { \rm{ (1)/( \sin(x) ) + ( \cos(x) )/( \sin(x) ) }} \\ \\ = { \boxed{ \rm{ \: \csc(x) + \cot(x) \: }}}

User Justin Bertram
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories