Answer:
![x = -0.472 \; \sf (3\;d.p.)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4z5rgnx21xrh46mx0as1kfo00wl2htfmax.png)
Explanation:
Given equation:
![(1)/(3) \log(1-x)=\log(x+1)+(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ed2bmlhaog0dwf7gxni6kiyi7azz4j1mvm.png)
![\textsf{Apply the log power law}: \quad n\log_ax=\log_ax^n](https://img.qammunity.org/2023/formulas/mathematics/high-school/966mhokjx150ubt58iaue03yurjdp1qdr0.png)
![\implies \log(1-x)^{(1)/(3)}=\log(x+1)+(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/lkdr5944u6hml1wsssgdp4f6wqu5lfzn8h.png)
Subtract log(x + 1) from both sides:
![\implies \log(1-x)^{(1)/(3)}-\log(x+1)=(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zryk3zb599ruo55jkme5heygt5dj34c7ti.png)
![\textsf{Apply the log quotient law}: \quad \log_ax - \log_ay=\log_a \left((x)/(y)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/lxfed0c2a4ciizkedyw47j66hgz9l7ofg9.png)
![\implies \log \left(\frac{(1-x)^{(1)/(3)}}{x+1}\right)=(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zbi122g9hparwmqzx9k9aiotgjko1ituv6.png)
![\textsf{Apply the log law}: \quad \log_ab=c \iff a^c=b](https://img.qammunity.org/2023/formulas/mathematics/high-school/vwiazngcy6iuf113wxpk40za4mrbuifjap.png)
![\implies 10^{(1)/(3)}=\frac{(1-x)^{(1)/(3)}}{x+1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2xyodv56t6dby7h0yradrl5kdynj0h4gx7.png)
![\textsf{Apply the exponent rule}: \quad a^{(1)/(n)}=\sqrt[n]{a}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vm4lkjs8bmphb4kk7nveqvu67lade0fclr.png)
![\implies \sqrt[3]{10} =\frac{\sqrt[3]{1-x}}{x+1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9l7pwax5k92e3l4l2h6km9buntwjute0cs.png)
Multiply both sides by (x + 1):
![\implies \sqrt[3]{10}(x+1)=\sqrt[3]{1-x}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1r59rf32xgzjqmtfsdq2rwruxwh2ybgzbj.png)
Cube both sides:
![\implies 10(x+1)^3=1-x](https://img.qammunity.org/2023/formulas/mathematics/high-school/zg0n2rvpy485jo4oo37tdrh4oj01lrdkkx.png)
Expand the left side:
![\implies 10(x+1)(x+1)(x+1)=1-x](https://img.qammunity.org/2023/formulas/mathematics/high-school/qbiogsi41g0hrnia45d876sytgein4b9he.png)
![\implies 10(x+1)(x^2+2x+1)=1-x](https://img.qammunity.org/2023/formulas/mathematics/high-school/ucvjah1wuwk5qcwrz7007yemfiq2biidom.png)
![\implies 10(x^3+3x^2+3x+1)=1-x](https://img.qammunity.org/2023/formulas/mathematics/high-school/wzw8jpvwfmgfy8qzot8b0iuuf36hw6ur5f.png)
![\implies 10x^3+30x^2+30x+10=1-x](https://img.qammunity.org/2023/formulas/mathematics/high-school/zb73q6gd8agad0yeav13pdmhwhj2gbja8y.png)
Subtract 1 and add x to both sides:
![\implies 10x^3+30x^2+31x+9=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/16kaud5afcvy0vukm5rubc7d7uy5z98dk2.png)
Find the roots of the cubic function by graphing, using a calculator, or by a numerical method.
Real root:
![x = -0.472 \; \sf (3\;d.p.)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4z5rgnx21xrh46mx0as1kfo00wl2htfmax.png)
Complex roots:
![x=(-1.264 + 0.556i)\; \sf (3\;d.p.)](https://img.qammunity.org/2023/formulas/mathematics/high-school/90dxsyy4zl1gg3eq55985thr43dnahqwel.png)
![x=(-1.264 - 0.556i)\; \sf (3\;d.p.)](https://img.qammunity.org/2023/formulas/mathematics/high-school/g6sgw5yhjvnhcq1ntugtnyh0wdb16p7x9n.png)
Therefore, the only valid solution is the real root:
![x = -0.472 \; \sf (3\;d.p.)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4z5rgnx21xrh46mx0as1kfo00wl2htfmax.png)
As we can only take logs of positive numbers, substitute the real root into (1 - x) and (x + 1) to check:
![x=-0.472 \implies 1-(-0.472)=1.472 > 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/xfwguvbpn3o9ehjy42klmjv946e81zjp19.png)
![x=-0.472 \implies -0.472+1=0.528 > 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/aem65qyz460loo4bs0aajmwq48w2hvjexi.png)
As both results are positive, this is a valid solution for the given equation.
(Proof of the solution is in the attached graph).