322,430 views
6 votes
6 votes
If x = √3-√2/√3+√2 and y = √3+√2/√3-√2, then find the value of x square + y square + xy.​

User KobeJohn
by
2.9k points

1 Answer

13 votes
13 votes


\large\underline{\sf{Solution-}}

(i)↓


\sf x=(\sqrt3-\sqrt2)/(\sqrt3+\sqrt2)

On rationalising,


\sf\longmapsto x=(\sqrt3-\sqrt2)/(\sqrt3+\sqrt2)*(\sqrt3-\sqrt2)/(\sqrt3-\sqrt2)

So,


\sf\longmapsto x=((\sqrt3-\sqrt2)^2)/((\sqrt3+\sqrt2)(\sqrt3-\sqrt2))

We know that,


  • \sf (a-b)(a+b)=a^2-b^2

And,


  • \sf (a-b)^2=a^2-2ab+b^2

So,


\sf\longmapsto x=((\sqrt3)^2-2(\sqrt3)(\sqrt2)+(\sqrt2)^2)/((\sqrt3)^2-(\sqrt2)^2)


\sf\longmapsto x=(3-2\sqrt6+2)/(3-2)


\sf\longmapsto x=(5-2\sqrt6)/(1)

Hence,


\sf\longmapsto x=5-2\sqrt6

(ii)↓


\sf y=(\sqrt3+\sqrt2)/(\sqrt3-\sqrt2)

On rationalising,


\sf\longmapsto y=(\sqrt3+\sqrt2)/(\sqrt3-\sqrt2)*(\sqrt3+\sqrt2)/(\sqrt3+\sqrt2)

So,


\sf\longmapsto y=((\sqrt3+\sqrt2)^2)/((\sqrt3+\sqrt2)(\sqrt3-\sqrt2))

We know that,


  • \sf (a-b)(a+b)=a^2-b^2

And,


  • \sf (a+b)^2=a^2+2ab+b^2

So,


\sf\longmapsto y=((\sqrt3)^2+2(\sqrt3)(\sqrt2)+(\sqrt2)^2)/((\sqrt3)^2-(\sqrt2)^2)


\sf\longmapsto y=(3+2\sqrt6+2)/(3-2)


\sf\longmapsto y=(5+2\sqrt6)/(1)

Hence,


\sf\longmapsto y=5+2\sqrt6

Now, finding the value of,


\sf x^2+y^2+xy

Now, substituting the values of x and y in equation,


\sf\longmapsto (5-2\sqrt6)^2+(5+2\sqrt6)^2+(5-2\sqrt6)(5+2\sqrt6)

So,


\sf\longmapsto [(5)^2-2(5)(2\sqrt6)+(2\sqrt6)^2]+[(5)^2+2(5)(2\sqrt6)+(2\sqrt6)^2]+[(5)^2-(2\sqrt6)^2]


\sf\longmapsto 25-20\sqrt6+24+25+20\sqrt6+24+(25-24)

Cancelling 20√6,


\sf\longmapsto 25+24+25+24+(25-24)


\sf\longmapsto 98+1


\longmapsto\bf 99


\textsf{Therefore, the value of x²+y²+xy is 99.}\\

User Csaba Okrona
by
3.0k points