119k views
2 votes
Given f(x) = 4-x² and (f - g)(x)=-x²+x+2, find the function g.

2 Answers

2 votes

Answer:


{ \rm{f(x) = 4 - {x}^(2) }}


{ \rm{(f - g)(x) = - {x}^(2) + x + 2}}

- From functions;


{ \boxed{ \tt{(f - g)(x) = f(x) - g(x)}}} \\ \\ { \rm{ - {x}^(2) + x + 2 = (4 - {x}^(2) ) - g(x) }} \\ \\ { \rm{g(x) = (4 - {x}^(2)) + {x}^(2) - x - 2 }} \\ \\ { \boxed{ \rm{g(x) = 2 - x}}}

User Venkata Raju
by
4.3k points
3 votes

Answer:

  • g(x) = 2 - x

Explanation:

Given

  • f(x) = 4 - x²,
  • (f - g)(x) = - x² + x + 2.

Find

  • g(x)

Solution

We know that:

  • (f - g)(x) = f(x) - g(x)

Use the given to find the missing function:

  • g(x) = f(x) - (f - g)(x)

  • g(x) =
  • 4 - x² - (- x² + x + 2) =
  • 4 - x² + x² - x - 2 =
  • 2 - x
User Sergpank
by
4.1k points