Answer:
a. Common differences (d) = 3
b. S40 = 3,180
Explanation:
Sn = a + (n - 1) d
S1 = 21 + (1 - 1) d
S1 = 21 + 0
S1 = 21......(1)
S3 = 21 + ( 3- 1) d
S3 = 21 + (2) d
S3 = 21 + 2d..,. (2)
.: d = 3
So that 21 + 2(3) = 21 + 6 = 27
For the first 40 terms
Sn = n/2 ( 2a + [n - 1] d])
S40 = 40/2 ( 2 × 21 + ( 40- 1) 3
S40 = 20 ( 42 + (39) 3]
S40 = 20 ( 42+ 117)
S40 =20 × 159
S40 = 3,180