Answer:
f(x) = 1/7 * (x + 7)^2 - 2
axis of symmetry: x = -7
vertex: (-7 | -2)
Explanation:
f(x) = 1/7 * (x^2 + 14x + 35)
f(x) = 1/7 * (x^2 + 14x) + 5
f(x) = 1/7 * (x^2 + 14x + 7^2 - 7^2) + 5
f(x) = 1/7 * (x^2 + 14x + 7^2 - 49) + 5
f(x) = 1/7 * (x^2 + 14x + 7^2) + 5 - 7
f(x) = 1/7 * (x + 7)^2 + 5 - 7
f(x) = 1/7 * (x + 7)^2 - 2