Answer:
40 cm
Explanation:
Pythagoras Theorem
![a^2+b^2=c^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/fdnnfwrccw5g60jmi691r5gcz9ekxf8waa.png)
where:
- a and b are the legs of the right triangle.
- c is the hypotenuse of the right triangle.
Let a be the shorter leg.
If the hypotenuse is 1 cm longer than twice the shorter side then:
![\implies c = 2a + 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/831f4ofphzgtnvi79c8tgamzaaddv4kkj5.png)
If the hypotenuse is 2 cm longer than the other side then:
![\implies c = b + 2](https://img.qammunity.org/2023/formulas/mathematics/high-school/i44nah766wplfa7mtii9f8t2ry4c8o2ubk.png)
Equate the two expressions for c and solve for b:
![\implies b+2=2a+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/s9ln0de2iywnv589l9kvzcvqv9vt0w20tz.png)
![\implies b=2a-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/nwpizviy0tkb46w19rcl4t2lges1ujfc2p.png)
Substitute the expression for c involving a, and the expression for b involving a, into Pythagoras Theorem and solve for a:
![\implies a^2+(2a-1)^2=(2a+1)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/z3hhdxhmlrgcc7rewtspmpi2937tpld791.png)
![\implies a^2+4a^2-4a+1=4a^2+4a+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/hb3h91c2svo7l38k8ez60n6wzbisf6x1ce.png)
![\implies a^2-4a=4a](https://img.qammunity.org/2023/formulas/mathematics/high-school/rop87uwtd9enb1fdqsi89jhafv7658f63q.png)
![\implies a^2-8a=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/ulfyz3newsstgiquq121dztjnfedxflb8t.png)
![\implies a(a-8)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/i9pmimyupc775v2hagoive5xvvwkgfynuk.png)
![\implies a=0, \quad a=8](https://img.qammunity.org/2023/formulas/mathematics/high-school/zbqmnvogf6ar8bl5v1ftvb7mccway4u1b1.png)
Since the length of a side cannot be zero, a = 8.
The perimeter of a two-dimensional shape is the distance around the outside. Therefore, the perimeter of the triangle is the sum of its sides:
![\begin{aligned} \implies \textsf{Perimeter}&=a+b+c\\&=a+(2a-1)+(2a+1)\\&=5a\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ux6ltmtpxpnco9sh82gxd551gkmdzlfg7z.png)
Substitute the found value of a into the expression for the perimeter:
![\begin{aligned} \implies \textsf{Perimeter}&=5(8)\\&=40\sf \; cm\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qhrvzjx8dn99m1n4hs6f29z83xnhgfryxo.png)
Therefore, the perimeter of the triangle is 40 cm.