Answer with step-by-step explanation:
![(a+b)^-^1*(a^-^1+b^-^1)=(ab)^-^1](https://img.qammunity.org/2023/formulas/mathematics/high-school/qeredfjn980x2ezqceqthipjbhcosstznq.png)
First, convert these into positive indices.
![(1)/((a+b)) *((1)/(a) +(1)/(b))=(1)/(ab)](https://img.qammunity.org/2023/formulas/mathematics/high-school/8ho3awpq8lseceixgugsvgyaxvxoe9b1nb.png)
And now, let us solve the left side.
![(1)/((a+b)) *((1)/(a) +(1)/(b))\\\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/ky3ozbp8rfcam59dsxjmo81u9493yv2elg.png)
First, solve the brackets. That is add the fractions inside the brackets.
![(1)/((a+b)) *((1)/(a) +(1)/(b))\\\\(1)/((a+b))*((1*b)/(a*b) +(1*a)/(b*a))\\\\(1)/((a+b))*((b)/(ab) +(a)/(ab))\\\\(1)/((a+b))*((a+b))/(ab)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cts5ta0d5jdqhpt9yeebqkjj147koce0kt.png)
Now multiply the fractions.
![(1)/(ab)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1etddwd7rznpwyztdt46cb632y44xouhks.png)
So, it's clear that the left side equals the right side.
Left side = Right side
![(1)/(ab)=(1)/(ab)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fcxty1z4u2walcry3vh852bujzikehrliv.png)
∴
![(a+b)^-^1*(a^-^1+b^-^1)=(ab)^-^1](https://img.qammunity.org/2023/formulas/mathematics/high-school/qeredfjn980x2ezqceqthipjbhcosstznq.png)