200k views
2 votes
Solve the initial value problem ty'+3y=0 , y(1)=2 t>0

1 Answer

2 votes

Answer:


y=(2)/(t^3)

Explanation:

Transforming the equation:


ty'+3y=0\\\\ty'=-3y\\\\t((dy)/(dt))=-3y\\ \\tdy=-3ydt\\\\(dy)/(y) =-(3dt)/(t)

Solving the separable equation:


\int(1)/(y) dy=\int-(3)/(t) dt\\\\ln(y)=-3ln(t)+c\\\\y=(e^(c) )/(t^(3) )

Finding c:

since y(1)=2 we get:


2=(e^c)/(1^(3) ) \\\\c=ln(2)

Final solution:


y=(e^(^l^n^(^2^)^))/(t^3)\\\\y=(2)/(t^3)

User Buzypi
by
5.0k points