228k views
2 votes
What is the degree of the polynomial 12x^2+8x-9

1 Answer

5 votes

Answer:f(x)=x8−8x6+19x4−12x3+14x2−8x+9=x8−8x6+16x4+3x4−12x3+12x2+2x2−8x+8+1

which allows us to rewrite f(x) as

f(x)=x4(x2−4)2+3x2(x−2)2+2(x−2)2+1

The first three terms are clearly non-negative, and each reaches their minimum of 0 at x=2 (the first term also has a minimum at x=−2). Thus, the minimum of f(x) must be 1.

This can't really be generalized. (I mean, you can apply the approach generally, but it won't generally give you such a convenient result.) I'm not sure I would have looked for this decomposition of f(x) except for the presence of the question.

Explanation:

User Arthur
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories