28,489 views
37 votes
37 votes
Rationalisie the denominator of: 4√3/2-√2​

User Pacuraru Daniel
by
1.8k points

1 Answer

21 votes
21 votes

Answer:


\longmapsto4 √(3) + 2 √(6) .

Explanation:


\sf{(4√(3))/(2 - √(2))}

By Rationalizing the denominator:-


= \sf{(4√(3))/(2 - √(2)) * (2 + √(2))/(2 + √(2))}


= \sf{(4√(3)(2 + √(2)))/((2)^2 - (√(2))^2)}


= \sf{(4√(3)(2 + √(2)))/(4 - 2)}


= \sf{(4√(3)(2 + √(2)))/(2)}


= \sf{\frac{\\ot{4}√(3)(2 + √(2))}{\\ot{2}}}


= \sf{2√(3)(2 + √(2))}


= \sf{4√(3) + 2√(6)}


\therefore \sf{(4√(3))/(2 - √(2)) = 4√(3) + 2√(6)}

User Torourke
by
2.6k points