141k views
0 votes
If a+ 1/a = 5 then find the value of; i) a² + 1/a² ii) a³ + 1/a³​

User Bodo
by
4.0k points

2 Answers

7 votes

Answer:

23 and 110

Explanation:

using the expansion

(a + b)² = a² + 2ab + b² , then

a +
(1)/(a) = 5 ( square both sides )

(a +
(1)/(a) )² = 5²

a² + 2(a ×
(1)/(a) ) +
(1)/(a^2) = 25

a² + 2(1) +
(1)/(a^2) = 25

a² + 2 +
(1)/(a^2) = 25 ( subtract 2 from both sides )

a² +
(1)/(a^2) = 23

---------------------------------------------------------------------

using the expansion

(a + b)³ = a³ + b³ + 3ab(a + b) , then

a +
(1)/(a) = 5 ( cube both sides )

(a +
(1)/(a) )³ = 5³

a³ +
(1)/(a^3) + 3(a ×
(1)/(a) )(a +
(1)/(a) ) = 125

a³ +
(1)/(a^3) + 3(1)(5) = 125

a³ +
(1)/(a^3) + (3 × 5) = 125

a³ +
(1)/(a^3) + 15 = 125 ( subtract 15 from both sides )

a³ +
(1)/(a^3) = 110

User Ari M
by
4.5k points
4 votes

Answer:

23

110

Explanation:

We have a + 1/a = 5

(a + 1/a)² = a² + (1/a²) + 2.a.1/a = a² + (1/a²) + 2

But (a + 1/a)² = 5² = 25

So a² + (1/a²) = 25 - 2 = 23

(a + 1/a)³ = a³ + 3a²(1/a) + 3a(1/a)² + (1/a)2

= a³ + 1/a³ + 3a + 3/a

= a³ + 1/a³ + 3(a + 1/a)

= a³ + 1/a³ + 3(5)

= a³ + 1/a³ + 15

But (a + 1/a)³ = 5³ = 125

So

a³ + 1/a³ + 15 = 125

a³ + 1/a³ = 110

User Scott Robinson
by
4.5k points