Answer:
31.4 cm
Explanation:
![\boxed{\begin{minipage}{6.3 cm}\underline{Slope-intercept form of a linear equation}\\\\$y=mx+b$\\\\where:\\ \phantom{ww}$\bullet$ $m$ is the slope. \\ \phantom{ww}$\bullet$ $b$ is the $y$-intercept.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/bpvlu5vjaqnseqj3h5nxcjen8omzu35wqi.png)
The y-intercept is the y-value when x is zero, so the initial value.
If the initial amount of snow is 72 cm, the y-intercept is 72.
The slope is the rate of change.
If the snow is melting at a rate of 5.8 cm per day, then the rate of change is -5.8.
Therefore, the equation that models the given word problem is:
![\boxed{\begin{minipage}{5.4 cm}\phantom{w}\\$y=-5.8x+72$\\\\where:\\ \phantom{ww}$\bullet$ $y$ is height of the snow in cm. \\ \phantom{ww}$\bullet$ $x$ is the time in days.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/3nm3njmmfm7re1593osvfm7auy9rudjcny.png)
To find how much snow is left after 7 days, substitute x = 7 into the found equation:
![\implies y=-5.8(7)+72](https://img.qammunity.org/2023/formulas/mathematics/college/7z78niehu5oa4yaf3d5k0gjwoit3kyd6gl.png)
![\implies y=-40.6+72](https://img.qammunity.org/2023/formulas/mathematics/college/1tq85su2m5hj3vkk1jlm3640kg7aycuo42.png)
![\implies y=31.4](https://img.qammunity.org/2023/formulas/mathematics/college/bezm73w22wot0mxvisz7rpdeo0qjcci04s.png)
Therefore, there will be 31.4 cm of snow left after seven days of warm weather.