Consecutive terms in the α sequence have a common difference of
8 - 10 = 6 - 8 = 4 - 6 = … = -2
so they are given recursively by
![\begin{cases} \alpha_1 = 10 \\ \alpha_n = \alpha_(n-1) - 2 & \text{for } n\ge2 \end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vruhgyv2mikx8hcwhd633kcz7xf81bsmyp.png)
By substitution, we have
![\alpha_n = \alpha_(n-1) - 2 \\\\ \alpha_n = \alpha_(n-2) - 2\cdot2 \\\\ \alpha_n = \alpha_(n-3) - 3\cdot2 \\\\ \vdots \\\\ \alpha_n = \alpha_(n-(n-1)) - (n-1)\cdot 2 = \alpha_1 - 2(n-1) = 12-2n](https://img.qammunity.org/2023/formulas/mathematics/high-school/o37m1z84u5j778fj9s7amzjqd4kxroivas.png)
Consecutive terms in the β sequence have a common ratio of
6/9 = 4/6 = (8/3)/4 = … = 2/3
so the recurrence for these terms is
![\begin{cases} \beta_1 = 9 \\\\ \beta_n = \frac23 \beta_(n-1) & \text{for } n\ge2 \end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kka65x267jixf2m091a03y52s7xaak5hhp.png)
We can solve for
similarly:
![\beta_n = \frac23 \beta_(n-1) \\\\ \beta_n = \left(\frac23\right)^2 \beta_(n-2) \\\\ \beta_n = \left(\frac23\right)^3 \beta_(n-3) \\\\ \vdots \\\\ \beta_n = \left(\frac23\right)^(n-1) \beta_(n-(n-1)) = \left(\frac23\right)^(n-1) \beta_1 = (2^(n-1))/(3^(n-1)) \cdot 3^2 = (2^(n-1))/(3^(n-3))](https://img.qammunity.org/2023/formulas/mathematics/high-school/af3hk2bm37ejaratrem1talz1758iut9l3.png)
The γ sequence has
-th term
![\gamma_n = \alpha_n \beta_n = (12-2n) (2^(n-1))/(3^(n-3)) = (108-18n) \left(\frac23\right)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vextymjkpt8t948ld7b7jh6gh3ipw6miss.png)
and we want to compute
![\displaystyle \sum_(n=1)^\infty \gamma_n = 108 \sum_(n=1)^\infty \left(\frac23\right)^(n-1) - 18 \sum_(n=1)^\infty n \left(\frac23\right)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/e2p9pm6qama0pc6t8h011hk5oen71huarp.png)
Recall the sum of an infinite geometric series with common ratio
converges to
![\displaystyle \sum_(n=1)^\infty r^(n-1) = \frac1{1-r}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t9wm15h06sobj86dmijph3vrlpfoip1xwv.png)
so that
![\displaystyle \sum_(n=1)^\infty \left(\frac23\right)^(n-1) = \frac1{1-\frac23} = 3](https://img.qammunity.org/2023/formulas/mathematics/high-school/b1e9nx7sjg66ovbr07eeug0tau6z0m867b.png)
For the remaining sum, we can use the method shown in question [24494877] to compute
![\displaystyle \sum_(n=1)^\infty nr^(n-1) = \frac1{(1-r)^2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pw59vcqx5yzqd2o2pyx575wq5ikpmrjala.png)
which gives
![\displaystyle \sum_(n=1)^\infty n \left(\frac23\right)^(n-1) = \frac1{\left(1-\frac23\right)^2} = 9](https://img.qammunity.org/2023/formulas/mathematics/high-school/r2ci25h6czkjrc8dar5yorfyazaxqpm2iy.png)
Then the infinite sum of the terms of γ converges to
![\displaystyle \sum_(n=1)^\infty \gamma_n = 108 \cdot 3 - 18 \cdot 9 = \boxed{162}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kdy1t3iu16k3upz3qpqvry7krl70j44cb9.png)