221k views
3 votes
Solve the system of linear equations using the substitution method.

Y = 6x + 11 and 2y - 4x = 14

A. (-1, 5)

B. (-4, 3)

C. (-2, 2)

D. (-4, 4)

User Lkraav
by
8.2k points

2 Answers

1 vote

Hope this answer helps you a lot

Solve the system of linear equations using the substitution method. Y = 6x + 11 and-example-1
User VickTree
by
7.8k points
5 votes

Option A. (-1,5)


{ \blue{ \tt{x = - 1}}}


{ \blue{ \tt{y = 5}}}

Explanation:


{ \bold{ \orange{y = 6x + 11}}} \: → \: { \bold{ \green{ {eq}^(n)(1)}}}


{ \bold{ \orange{2y - 4x = 14}}} \: →{ \green{ \bold{ {eq}^(n)(2)}}}

Substitute the value of y in Equation no. (2) then,


{ \bold{ \orange{2(6x + 11) - 4x = 14}}}


{ \bold{ \orange{12x + 22 - 4x = 14}}}


{ \bold{ \orange{8x + 22 = 14}}}


{ \bold{ \orange{8x = 14 - 22}}}


{ \bold{ \orange{8x = - 8}}}


{ \bold{ \orange{x = ( - 8)/( \: \: \: 8)}}}


{ \bold{ \orange{x = - 1}}}

Substitute the value of x in Equation no. (1) then,


{ \bold{ \orange{y = 6x + 11}}}


{ \bold{ \orange{y = 6(-1) + 11}}}


{ \bold{ \orange{y = -6 + 11}}}


{ \bold{ \orange{y = 5}}}

User Kalisjoshua
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories