Answer:
4s² (s + 5)(s − 3)
Explanation:
Factor
![4s^(4) +8s^(3)-60s^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nz2el973g6roipf1nf419h1s9dsqnb3ovg.png)
45² (s - 5)(s + 3)
This polynomial does not factor.
4s² (s 15)(s + 4)
4s² (s + 5)(s − 3)
The common term is
so:
![4s^(2) (s^(2) +2s-15)](https://img.qammunity.org/2023/formulas/mathematics/high-school/a2ytl111rcvx02pjp3kssfi8lv851rmtjg.png)
assume:
a = 1
b = 2
c = -15
Find two numbers that sum to 2 and multiply to -15:
-3+5 = 2
-3 × 5 = -15
so
![(s^(2) +2s-15) = (s-3)(s+5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/dbxhuvnl8xbdtihe16p9nujzirvy8d1jre.png)
Plug in to
![4s^(2) (s^(2) +2s-15)](https://img.qammunity.org/2023/formulas/mathematics/high-school/a2ytl111rcvx02pjp3kssfi8lv851rmtjg.png)
to get:
![4s^(2) (s-3)(s+5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ogbyqpusa3we009b8k1ejlnfd08xiect67.png)