129k views
2 votes
In the following exercise, two sides and an angle are given. First determine whether the information results in no triangle, one triangle, or two triangles. Solve the resulting triangle.

a=229,b=244, and A = 37.8°

1 Answer

3 votes

By the Law of Sines,


(\sin B)/(b)=(\sin A)/(a) \\ \\ \sin B=(b \sin A)/(a) \\ \\ =(244\sin 37.8^(\circ))/(229) \\ \\ B \approx 37.42^(\circ), 142.58^(\circ)

Of these, only 37.42° is a possible value of B (sum of angles of a triangle is 180°).

So, we have that:


a=229, b=244, A=37.8^(\circ), B=\arcsin \left((244\sin 37.8^(\circ))/(229) \right)

Angles of a triangle add to 180°, so:


C=180^(\circ)-A-B=142.2^(\circ)-\arcsin \left((244\sin 37.8^(\circ))/(229) \right)</p><p>

Using the Law of Sines again,


(c)/(\sin C)=(a)/(\sin A) \\ \\ c=(a \sin C)/(\sin A) \\ \\ =(244\sin \left(142^(\circ)-\arcsin \left((244 \sin 37.8^(\circ))/(229) \right) \right))/(\sin 37.8^(\circ))

So, there is one possible triangle, where:


a=229 \\ \\ b=244 \\ \\ c=(244\sin \left(142^(\circ)-\arcsin \left((244 \sin 37.8^(\circ))/(229) \right) \right))/(\sin 37.8^(\circ)) \\ \\ A=37.8^(\circ) \\ \\ B=\arcsin \left((244\sin 37.8^(\circ))/(229) \right) \\ \\ C=142.2^(\circ)-\arcsin \left((244\sin 37.8^(\circ))/(229) \right)

User ScottN
by
3.9k points