2.7k views
4 votes
Find the first derivative.

Answer: y’ = 2/3 x^1/2 - 2/ sqrt of x - 5/2x^2/3

I’m given an answer but don’t know how to get it.

Find the first derivative. Answer: y’ = 2/3 x^1/2 - 2/ sqrt of x - 5/2x^2/3 I’m given-example-1
User Doriann
by
3.5k points

1 Answer

2 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad\displaystyle \tt \rightarrow \: (dy)/(dx) = \frac{ √(x) (2x - 4) -( \frac{{x}^(2) - 4x + 5) }{2 √(x) } )}{x }

____________________________________


\large \tt Solution \: :


\qquad\displaystyle \tt \rightarrow \: y = \frac{ {x}^(2) - 4x + 5 }{ √(x) }

We know, division rule of differentiation :


\qquad\displaystyle \tt \rightarrow \: y = (u)/(v)

then,


\qquad\displaystyle \tt \rightarrow \: (dy)/(dx) = \frac{v(du)/(dx) - u (dv)/(dx) }{(v) {}^(2) }

So, let's do the same in given equation :


\qquad\displaystyle \tt \rightarrow \: (dy)/(dx) = \frac{ √(x) (d)/(dx)(x {}^(2) - 4x + 5) - ( {x}^(2) - 4x + 5) (d)/(dx)( √(x) ) }{( √(x) ) {}^(2) }


\qquad\displaystyle \tt \rightarrow \: (dy)/(dx) = \frac{ √(x) (2x - 4) -( {x}^(2) - 4x + 5) (1)/(2 √(x) ) }{x }

[ This is the required Answer, but you can simplify it however you want according to the choices given ]


\qquad\displaystyle \tt \rightarrow \: (dy)/(dx) = \frac{x \bigg( (√(x) (2x - 4))/(x) -( {x}^(2) - 4x + 5) (1)/(2x √(x) ) \bigg)}{x }


\qquad\displaystyle \tt \rightarrow \: (dy)/(dx) = (√(x) (2x - 4))/(x) -( {x}^(2) - 4x + 5) (1)/(2x √(x) )


\qquad\displaystyle \tt \rightarrow \: (dy)/(dx) = ((2x - 4))/( √( x)) - \frac{( {x}^(2) - 4x + 5) }{2 \sqrt{x {}^(3) } }

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User SobieSki
by
3.1k points