207k views
5 votes
Need help on this, thanks

Need help on this, thanks-example-1
User Shians
by
7.2k points

2 Answers

4 votes

Answer:

x=15, y=7

Step-by-step explanation:

Angles that form a linear pair are supplementary, so:


2(5x-5)+3x-5=180 \\ \\ 10x-10+3x-5=180 \\ \\ 13x-15=180 \\ \\ 13x=195 \\ \\ x=15 \\ \\ \\ \\ 5y+5+20y=180 \\ \\ 25y+5=180 \\ \\ 25y=175 \\ \\ y=7

User Lidong Guo
by
7.9k points
2 votes

Answer:


x=\boxed{15}\\\\y=\boxed{7}

Explanation:

Angles on a Straight Line Theorem

The sum of angles on a straight line is equal to 180°.

Solving for x:


\boxed{\begin{aligned}2(5x-5)^(\circ)+(3x-5)^(\circ)&=180^(\circ)\\2(5x-5)+(3x-5)&=180\\10x-10+3x-5&=180\\13x-15&=180\\13x-15+15&=180+15\\13x&=195\\13x / 13 &=195/ 13 \\x&=15\end{aligned}}

Solving for y:


\boxed{\begin{aligned}(5y+5)^(\circ)+20y^(\circ)&=180^(\circ)\\(5y+5)+20y&=180\\5y+5+20y&=180\\25y+5&=180\\25y+5-5&=180-5\\25y&=175\\25y / 25 &=175/ 25 \\y&=7\end{aligned}}

Therefore:


x=\boxed{15}\\\\y=\boxed{7}

User BenJacob
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories