Answer:
![\textsf{1. \quad $x < -4$ or $x > 2$}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zhhy84bs5hz30kbntrnd7eyy8xittx6slb.png)
![\textsf{2. \quad $-2 < x < 6$}](https://img.qammunity.org/2023/formulas/mathematics/high-school/j8lf9p3nsk8nxye1dpm88zvzs3ns6c0l56.png)
![\textsf{3. \quad $x < -1$ or $x > \frac{8}[5}$}](https://img.qammunity.org/2023/formulas/mathematics/high-school/806qmrby70whm1msi2ifelxlbtvuvlcb81.png)
![\textsf{3. \quad $x < -1$ or $x > \frac{8}[5}$}](https://img.qammunity.org/2023/formulas/mathematics/high-school/806qmrby70whm1msi2ifelxlbtvuvlcb81.png)
![\textsf{3. \quad $x < -1$ or $x > (8)/(5)$}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8eyd3kr7a73j2d30eujaf9ct1lj6u7m3l3.png)
Explanation:
The intervals on which a quadratic function is positive are those intervals where the function is above the x-axis, i.e. where y > 0.
The zeros of the quadratic function are the points at which the parabola crosses the x-axis.
If the leading coefficient of a quadratic function is positive, the parabola opens upwards.
If the leading coefficient of a quadratic function is negative, the parabola opens downwards.
Therefore, to find the intervals on which each quadratic function is positive:
- Calculate the zeros.
- Determine if the parabola opens upwards or downwards.
- If the parabola opens upwards, the intervals are less than the smaller zero and greater than the larger zero.
- If the parabola opens downwards, the interval is between the zeros.
Question 1
Given function:
![y=x^2+2x-8](https://img.qammunity.org/2023/formulas/mathematics/college/g2bksg9jyd9za3s92wfilx5bo8rm432t6p.png)
Factor the given function:
![\implies y= x^2+4x-2x-8](https://img.qammunity.org/2023/formulas/mathematics/high-school/dgtf9aa8z04uw5qp6zjpz9inbmdoh7ujbx.png)
![\implies y=x(x+4)-2(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/1zkow39o1wcnoyb8so9xv6opl7eh6gty1o.png)
![\implies y=(x-2)(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/urg3f6epemj35n3mvevedjec4nramtxm84.png)
Substitute y = 0 to find the zeros:
![\implies (x-2)(x+4)=0](https://img.qammunity.org/2023/formulas/mathematics/college/272j6teyjm6bhofodgo6tt47pow91l74go.png)
![\implies x-2=0 \implies x=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/d0yipo604i7t7mkf1whclttc1p448vo21u.png)
![\implies x+4=0 \implies x=-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/4tm9ug1vcm8kinwndkd75o09d3ksuysxf2.png)
The leading coefficient is positive, so the parabola opens upwards.
Therefore, the interval on which the function is positive is:
- Solution: x < -4 or x > 2
- Interval notation: (-∞, -4) ∪ (2, ∞)
Question 2
Given function:
![y=-x^2+4x+12](https://img.qammunity.org/2023/formulas/mathematics/high-school/7p6s510klawdoixsfff69nqxwskczd856s.png)
Factor the given function:
![\implies y=-(x^2-4x-12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/uz7itzljyzdpcvlcox2bmcqejq6z1wpv9w.png)
![\implies y=-(x^2-6x+2x-12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r5d4r5z1r7gwjk7kmmaivf116zg7m078lb.png)
![\implies y=-(x(x-6)+2(x-6))](https://img.qammunity.org/2023/formulas/mathematics/high-school/mpkaj0by63gl2dzojbz3fejt6wy8gfkby9.png)
![\implies y=-(x+2)(x-6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/epju4eakvx4ha9o8mzjgg5p57xivmy6nhk.png)
Substitute y = 0 to find the zeros:
![\implies -(x+2)(x-6)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/29uzqpn11xwsi89bc2ostx6nmoxvjizfh0.png)
![\implies (x+2)(x-6)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/wffv505hajfw7n4fnv4i4gutscyyxdh1cl.png)
![\implies x+2=0 \implies x=-2](https://img.qammunity.org/2023/formulas/mathematics/high-school/4nokn2r3i7iz9avmgl0mh2trnkt8s57j8k.png)
![\implies x-6=0 \implies x=6](https://img.qammunity.org/2023/formulas/mathematics/high-school/cngguxektuvythwzyne0zozzsz3xfw3lnd.png)
The leading coefficient is negative, so the parabola opens downwards.
Therefore, the interval on which the function is positive is:
- Solution: -2 < x < 6
- Interval notation: (-2, 6)
Question 3
Given function:
![y=5x^2-3x-8](https://img.qammunity.org/2023/formulas/mathematics/high-school/8mogpnn6r735umb2mokmuq82byauzbsdgg.png)
Factor the given function:
![\implies y=5x^2-8x+5x-8](https://img.qammunity.org/2023/formulas/mathematics/high-school/i1mk3aba9griklom9cbd5wejy8v71ubyk0.png)
![\implies y=x(5x-8)+1(5x-8)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2tv576yhd8x8e0znuw1w0ekxp2zxtw4nfg.png)
![\implies y=(x+1)(5x-8)](https://img.qammunity.org/2023/formulas/mathematics/high-school/qx6yhkhc1oejx2cyau7n25jspopvk0q50g.png)
Substitute y = 0 to find the zeros:
![\implies (x+1)(5x-8)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/e7r4tnsu39cqbo8xmqt4dim5hbjyd2wxap.png)
![\implies x+1=0 \implies x=-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/ct8xmgkxnoovwufd2f09k9gks8ezzzingl.png)
![\implies 5x-8=0 \implies x=(8)/(5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/d209s4chzugplniu96rzmn7a0crqzjwj9z.png)
The leading coefficient is positive, so the parabola opens upwards.
Therefore, the interval on which the function is positive is:
- Solution: x < -1 or x > ⁸/₅
- Interval notation: (-∞, -1) ∪ (⁸/₅, ∞)