ANSWER:
(a) 112.58 m/s
(b) 16463.98 N
Explanation:
Given:
Frequency (F) = 35.5 Hz
Mass (m) = 0.656 kg
Radius (r) = 50.5 cm = 0.505 m
(a) To determine the speed with which the mass moves, we must first calculate the angular speed, like this:
![\begin{gathered} \omega=2\pi f \\ \\ \omega=(2)(3.14)(35.5) \\ \\ \omega=222.94\text{ rad/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/875t8sjk6881u6346wyeupm0dwoysl86x1.png)
Now we can calculate the speed, with the help of the radius:
![\begin{gathered} v=\omega r \\ \\ v=(222.94)(0.505) \\ \\ v=112.58\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/iszplm98nby3zr6zg62qtte5xtzwi4xpwa.png)
(b) The centripetal force is calculated using the following formula:
![\begin{gathered} F_c=(mv^2)/(r) \\ \text{ } \\ \text{ we replacing} \\ \\ F_c=(0.656\cdot(112.58)^2)/(0.505) \\ \\ F_c=16463.98\text{ N} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/lafrehlekwr8rdyu94ofqmddgx97ly4ejt.png)