iven:
heere are given that the population in the year 2000 was 12000 and the growth rate is 7% per year.
xplanation:
ccording to the question:
For t =0 which is the year 2000:
![P(0)=12000](https://img.qammunity.org/2023/formulas/mathematics/college/172c9gjvd76m7543tb2vskw3kfx8zl4kim.png)
For t = 1:
![P(1)=12000+7\%(12000)](https://img.qammunity.org/2023/formulas/mathematics/college/yg312406b1h4youinz9psdhpwa82eyyedr.png)
If we say r is the rate, then:
![\begin{gathered} P(1)=12000+r(12000) \\ P(1)=12000(1+r) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/as1ht64f7z4alsku0hbhhwrc2o8006hlh8.png)
Then,
For t = 2:
![\begin{gathered} P(2)=12000(1+r)(1+r) \\ P(2)=12000(1+r)^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oflwzw9t8qhuy1j06rchrd66f7y328qzju.png)
And,
For t = 3:
![P(3)=12000(1+r)^3](https://img.qammunity.org/2023/formulas/mathematics/college/78mugau6ptov4m794ycp5srmbtfpl6gbjr.png)
Therefore our function should be:
(a):
he population function:
![P(t)=12000(1.07)^t](https://img.qammunity.org/2023/formulas/mathematics/college/o2pxdn4f5tefnlyty3iqolamk61yl6pdwn.png)
Now,
(b):
ccording to the question:
2008 is 8 year from year 2000:
Therefore, t = 8:
Then,
Put the value 8 for t into the function (a):
![\begin{gathered} P(8)=12000(1.07)^t \\ P(8)=12000(1.07)^8 \\ P(8)=12000(1.718) \\ P(8)=20616 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ryzn0w9zfv85en7luwm0l9yefxf7zu69df.png)
inal answer:
![P(t)=12000*(1.07)^(t-2000)](https://img.qammunity.org/2023/formulas/mathematics/college/olgzkklcps1zlsjxpxlvoaputxtybs76c4.png)