136k views
5 votes
Please help with question!!

Please help with question!!-example-1
User Jaeson
by
8.3k points

2 Answers

6 votes

Answer:


\textsf{Exact form}: \quad x=-7 +√(49+e^3)


\textsf{Decimal form}: \quad x=1.312\; \sf (3\:d.p.)

Explanation:

Given equation:


\ln x + \ln (x+14)=3


\textsf{Apply the product law} \quad \ln x + \ln y=\ln xy:


\implies \ln (x(x+14))=3


\implies \ln (x^2+14x)=3


\textsf{Apply the log law} \quad e^(\ln x)=x:


\implies e^(\ln (x^2+14x))=e^3


\implies x^2+14x=e^3

Subtract e³ from both sides to form a quadratic equation:


\implies x^2+14x-e^3=e^3-e^3


\implies x^2+14x-e^3=0

Quadratic Formula


x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when }\:ax^2+bx+c=0

Therefore:

  • a = 1
  • b = 14
  • c = -e³

Substitute these values into the quadratic formula and solve for x:


\implies x=(-14 \pm √(14^2-4(1)(-e^3)) )/(2(1))


\implies x=(-14 \pm √(196+4e^3) )/(2)


\implies x=(-14 \pm √(4(49+e^3)) )/(2)


\implies x=(-14 \pm √(4)√(49+e^3) )/(2)


\implies x=(-14 \pm 2√(49+e^3) )/(2)


\implies x=-7 \pm √(49+e^3)

Solutions:


x=-7 +√(49+e^3), \quad x=-7 -√(49+e^3)

Decimal form:


x= 1.312, \quad x=-15.312

As logs of negative numbers cannot be taken, the only solution is:


x=-7 +√(49+e^3)\\\\x=1.312\;\sf (3\;d.p.)

User Morgb
by
8.3k points
7 votes

Given:


\ln x+\ln (x+14)=3

Use the formula:


\ln ab=\ln a+\ln b
\begin{gathered} \ln x+\ln (x+14)=3 \\ \ln x(x+14)=3 \\ x(x+14)=e^3 \\ x^2+14x=20.085 \end{gathered}

solve the equation :


\begin{gathered} x^2+14x=20.085 \\ x^2+14x-20.085=0 \\ x=\frac{-14\pm\sqrt[]{14^2-4(1)(-20.085)}}{2} \\ x=\frac{-14\pm\sqrt[]{276.34}}{2} \\ x=(-14\pm16.623)/(2) \\ x=-7\pm8.312 \\ x=-7+8.312;x=-7-8.312 \\ x=1.312;x=-15.312 \end{gathered}

User Nicolaesse
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories