136k views
5 votes
Please help with question!!

Please help with question!!-example-1
User Jaeson
by
3.9k points

2 Answers

6 votes

Answer:


\textsf{Exact form}: \quad x=-7 +√(49+e^3)


\textsf{Decimal form}: \quad x=1.312\; \sf (3\:d.p.)

Explanation:

Given equation:


\ln x + \ln (x+14)=3


\textsf{Apply the product law} \quad \ln x + \ln y=\ln xy:


\implies \ln (x(x+14))=3


\implies \ln (x^2+14x)=3


\textsf{Apply the log law} \quad e^(\ln x)=x:


\implies e^(\ln (x^2+14x))=e^3


\implies x^2+14x=e^3

Subtract e³ from both sides to form a quadratic equation:


\implies x^2+14x-e^3=e^3-e^3


\implies x^2+14x-e^3=0

Quadratic Formula


x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when }\:ax^2+bx+c=0

Therefore:

  • a = 1
  • b = 14
  • c = -e³

Substitute these values into the quadratic formula and solve for x:


\implies x=(-14 \pm √(14^2-4(1)(-e^3)) )/(2(1))


\implies x=(-14 \pm √(196+4e^3) )/(2)


\implies x=(-14 \pm √(4(49+e^3)) )/(2)


\implies x=(-14 \pm √(4)√(49+e^3) )/(2)


\implies x=(-14 \pm 2√(49+e^3) )/(2)


\implies x=-7 \pm √(49+e^3)

Solutions:


x=-7 +√(49+e^3), \quad x=-7 -√(49+e^3)

Decimal form:


x= 1.312, \quad x=-15.312

As logs of negative numbers cannot be taken, the only solution is:


x=-7 +√(49+e^3)\\\\x=1.312\;\sf (3\;d.p.)

User Morgb
by
4.1k points
7 votes

Given:


\ln x+\ln (x+14)=3

Use the formula:


\ln ab=\ln a+\ln b
\begin{gathered} \ln x+\ln (x+14)=3 \\ \ln x(x+14)=3 \\ x(x+14)=e^3 \\ x^2+14x=20.085 \end{gathered}

solve the equation :


\begin{gathered} x^2+14x=20.085 \\ x^2+14x-20.085=0 \\ x=\frac{-14\pm\sqrt[]{14^2-4(1)(-20.085)}}{2} \\ x=\frac{-14\pm\sqrt[]{276.34}}{2} \\ x=(-14\pm16.623)/(2) \\ x=-7\pm8.312 \\ x=-7+8.312;x=-7-8.312 \\ x=1.312;x=-15.312 \end{gathered}

User Nicolaesse
by
5.4k points