we have the expression
![(4)/(3x^2-23x+40)](https://img.qammunity.org/2023/formulas/mathematics/college/kk31elmhtg95mgv6u9a4v927dyybqywmvi.png)
Rewrite as equivalent rational expressions with denominator (3x-8)(x-5)(x-3)
In this problem
3x^2-23x+40=3(x-5)(3x-8)
so
![(4)/(3x^2-23x+40)=(4)/(3\mleft(x-5\mright)\mleft(3x-8\mright))](https://img.qammunity.org/2023/formulas/mathematics/college/oo4530v3jv14y88mvxf62zhzm1c55liz2i.png)
Multiply by (x-3)/(x-3)
![(4)/(3(x-5)(3x-8))\cdot((x-3))/((x-3))=(4(x-3))/(3(x-5)(3x-8)(x-3))](https://img.qammunity.org/2023/formulas/mathematics/college/gck6t41olwss7a37f1irc9ndz4iwnqcinr.png)
Part 2
we have the expression
![(9x)/(3x^2-17x+24)](https://img.qammunity.org/2023/formulas/mathematics/college/vlwseokgzozbtlx1t22174ky106sup5shq.png)
we have that
3x^2-17x+24=3(3x-8)(x-3)
so
![(9x)/(3x^2-17x+24)=(9x)/(3\mleft(3x-8\mright)\mleft(x-3\mright))=(3x)/((3x-8)(x-3))](https://img.qammunity.org/2023/formulas/mathematics/college/j3smywexj25zea28tewhs0vof9r7tskmbn.png)
Multiply the expression by (x-5)/(x-5)
![(3x)/((3x-8)(x-3))\cdot((x-5))/((x-5))=(3x(x-5))/((3x-8)(x-3)(x-5))](https://img.qammunity.org/2023/formulas/mathematics/college/wspq51d1z9oy1g36zca2kimjc41366xvy5.png)