Given:
A table with the given values of the function y=g(x).
To find the function that represents g(x), we substitute a value of x into the given options.
For:
g(x =3+2x:,:
Let x=3
![\begin{gathered} g(x)=3+2x \\ =3+2(3) \\ =9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b4053y2z2fz03hesf9nxvmnl3xww6ov1ks.png)
Based on the given table, the value g(x) is 24 when x=3. So g(x)=3+2x is not the function that represents g(x).
For
![\begin{gathered} g(x)=3\cdot2x \\ =3\cdot2(3) \\ =18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f48phiovxgea5zi9wuvyqk2vd2e7c95b5t.png)
The value of g(x) =18 when x=3, so this is not the function.
For g(x)=3x^2:
![\begin{gathered} g(x)=3x^2 \\ =3(3)^2 \\ =27 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tqivniz3mzsz3ly1sdwr7xwd7nq4dvcqzo.png)
Hence, this is not the function as well.
For g(x)=3(2)^x:
![\begin{gathered} g(x)=3\cdot2^x \\ =3\cdot2^3 \\ =3(8) \\ g(x)=24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7p15wxlqu70iihuc9b4im2duabq431lcb7.png)
We can notice that when x=3, the value of g(x) =24 which is the same as the value of g(x) in the given table.
To double check this, we plug in the other values of x.
Therefore, the answer is:
![g(x)=3\cdot2^x](https://img.qammunity.org/2023/formulas/mathematics/college/fbr4o9x4cka43gmwy17k53hlrz8nblay5p.png)