we have the equation
![y=31sin5x+32](https://img.qammunity.org/2023/formulas/mathematics/high-school/kyypc1hzyb4hoy7xmvsh1dxe43n6xvwb7v.png)
Find out the first derivative
![\begin{gathered} y^(\prime)=(5)(31)c0s5x \\ y^(\prime)=155cos5x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8aj6lvy8dcpj1u8vy6y2sr76pior2lkurs.png)
equate to zero the derivative, to find out the critical points
![\begin{gathered} 155cos5x=0 \\ cos5x=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d74wtzxrirxlu5udj0lgy23ocl9r34snr7.png)
The value of cosine is zero when the angle is 90, 270 degrees (pi/2 and 3pi/2)
so
![\begin{gathered} 5x=(\pi)/(2) \\ \\ x=(\pi)/(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/21d8daot7r9cxocd4fbhb3xo357af1hbdq.png)
![\begin{gathered} 5x=(3\pi)/(2) \\ \\ x=(3\pi)/(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2bur6o9x4lkeswq8p4jdr1d1eiuu5xi4um.png)
For x=pi/10
Find out the y-coordinate
![\begin{gathered} y=31s\imaginaryI n(5\pi)/(10)+32 \\ \\ y=31sin(\pi)/(2)+32 \\ \\ y=31+32=63\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u86woo0e6l5hmt7f9lg74se63v3hqmbddz.png)
Verify for x=3pi/10
![\begin{gathered} y=31s\imaginaryI n5((3\pi)/(10))+32 \\ \\ y=31s\imaginaryI n((3\pi)/(2))+32 \\ y=-31+32=1\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7nelnmx4fyltbxdv2hhss35jmlzelowp0r.png)
The maximum height is 63 ft