Solution:
The equation of the ellipse in the question is given as
![((y-3)^2)/(9)-((x-3)^2)/(9)=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/6h0pfeekrs2q1rr1vwj5cp95w1v11nmc5m.png)
Concept:
The general formula of a hyperbola is
![\begin{gathered} ((y-h)^2)/(b^2)-((x-k)^2)/(a^2)=1 \\ \text{Where } \\ h,k\text{ are the centres} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t6s46i2rfce02k3s9lb8wqz772m4joqxtr.png)
From the above equation by comparing coeficient, we will have
![\begin{gathered} a^2=9 \\ a=3 \\ b^2=9 \\ b=3 \\ (a,b)\Rightarrow(3,3) \\ h=3,k=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/z2cgx3cgmx6bxmyncsw9cp48pgm889s57e.png)
The linear eccentricity c, will be
![\begin{gathered} c=\sqrt[]{a^2+b^2} \\ c=\sqrt[]{3^2+3^2} \\ c=\sqrt[]{9+9} \\ c=\sqrt[]{18} \\ c=3\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1luh5gf2w4vip3manebh4yrep4sfoo45hu.png)
The vertices of the hyperbola will be calculate using the formula below
![\begin{gathered} (h,k-b)\Rightarrow(3,3-3)\Rightarrow(3,0) \\ (h,h+b)\Rightarrow(3,3+3)\Rightarrow(3,6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ndzbq9queptj5bnsvwm7nybpojqvdzztto.png)
The co-vertex are calculated using the formula below
![\begin{gathered} (h-a,k)\Rightarrow(3-3,3)\Rightarrow(0,3) \\ (h+a,k)\Rightarrow(3+3,3)\Rightarrow(6,3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1drepv1e2qjdkkdwy8ghkm5mq5bn2s8x9g.png)
The foci of the hyperbola will be calculated using the formula below
![\begin{gathered} \mleft(h,k-c\mright)\Rightarrow(3,3-3\sqrt[]{2)} \\ \mleft(h,k+c\mright)\Rightarrow\Rightarrow\Rightarrow\mleft(3,3+3\sqrt[]{2}\mright) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yvij52k0co8ns30tjoamdspr3jata9gu57.png)
The eccentricity, e is
![e=(c)/(b)=\frac{3\sqrt[]{2}}{3}=\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hiczxqtdjokknbjiuooa74jyil20i09aol.png)
Hence,
The sketch of the graph is given below as
The foci is represented with the two red dots on the graph
The vertices are represented above by the two coordinates