9.5k views
3 votes
The hypotenuse of a triangle is 13 long. The leg is 7 inches longer than the shorter leg. Find the side lengths of the triangle.

1 Answer

7 votes

\begin{gathered} longer=x+7 \\ shorter=x \\ hypotenuse=13 \\ x^2+(x+7)^2=13^2 \\ x^2+x^2+2(x)(7)+7^2=13^2 \\ 2x^2+14x+49=169 \\ 2x^2+14x+49-169=0 \\ 2x^2+14x-120=0 \\ x=(-b\pm√(b^2-4ac))/(2a) \\ a=2 \\ b=14 \\ c=-120 \\ x=(-(14)\pm√((14)^2-4(2)(-120)))/(2(2)) \\ x=(-14\pm√(196+960))/(4) \\ x=(-14\pm√(1156))/(4) \\ x=(-14\pm34)/(4) \\ x1=(-14+34)/(4)=(20)/(4)=5 \\ x1=5 \\ x2=(-14-34)/(4)=(-48)/(4)=-12,\text{ this is not the answer because the length} \\ is\text{ not a negative number} \\ Hence \\ longer=x+7 \\ longer=5+7 \\ longer=12 \\ shorter=5 \\ Therefore,\text{ the lengths of the triangle are 5 and 12} \end{gathered}

User Joachim Seminck
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories